好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

电磁学第二章例题.doc

11页
  • 卖家[上传人]:M****1
  • 文档编号:546709532
  • 上传时间:2024-01-01
  • 文档格式:DOC
  • 文档大小:388.51KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 四川师范大学教案电磁学物理与电子工程学院课程名称电磁学授课专业物理学班级08级课程编号07060420211、2班课程类型必修课校级公共课();基础或专业基础课(√);专业课()选修课限选课();任选课()授课方式课堂讲授(√);实践课()考核方式考试(√);考查()课程教学学时80学时学分5学分教材及主要参考书作者教材: 《电磁学》(第二版),高等教育出版社,2004年参考书:1.《电磁学》(上、下册),人民教育出版社,19782.《新概念物理教程·电磁学》,高等教育出版社,19983.《物理学》(电磁学),上海科学技术出版社,19794.《物理学》(第二卷第一分册),科学出版社,1979梁灿彬、秦光戎、梁竹健原著,梁灿彬修订赵凯华、陈熙谋赵凯华等复旦大学、上海师范大学物理系编哈里德·瑞斯尼克著,李仲卿译学时分配第一章 静电场的基本规律(14+2学时)第二章 有导体时的静电场(8+1学时)第三章 静电场中的电介质(8+1学时)第四章 恒定电流和电路(5+1学时)第五章 恒定电流的磁场(11+1学时)第六章 电磁感应与暂态过程(15+1学时)第七章 磁介质(7+1学时)第九章 时变电磁场和电磁波(4学时)物理与电子工程学院章节名称第二章有导体时的静电场教学目的及要求 使学生掌握静电平衡时导体的性质,了解封闭金属导体壳内外空间电场的分布,并通过对1、2节的学习,加深对高斯定理和环路定理的理解,并能解释静电感应、静电屏蔽现象;理解电容的物理意义,并能进行电容的计算;了解带电体系静电能的概念,能对电容器的静电能进行计算。

      教学重点与难点及处理方法重点:静电平衡时导体的性质,电容的物理意义及电容的计算,静电能的概念及电容器静电能的计算难点:导体静电平衡问题的讨论方法,导体静电平衡时的性质的应用,对带电体系静电能概念的理解处理方法:课堂讲授、课后讨论、课后做习题等方式相结合讨论、练习、作业习题: 2.1.1; 2.1.42.2.1;2.2.22.3.2;2.3.5;2.3.72.5.1教学内容第一节 静电场中的导体:静电感应现象,静电平衡状态及静电平衡时导体的性质,带电导体所受的静电力,孤立导体的形状对电荷分布的影响,导体静电平衡问题的讨论方法第二节 封闭金属壳内外的静电场: 壳内外空间静电场的分布,静电屏蔽现象第三节 电容器及其电容: 孤立导体的电容,电容器及其电容,电容器的连接,电容的计算第四节 静电演示仪器: 感应起电机,静电计(自学)第五节 带电体系的静电能: 带电体系静电能的概念,电容器的静电能及计算注:教案按授课章数填写,每一章均应填写一份重复班授课可不另填写教案教学内容须另加附页3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比A、场强方向(表面附近的点)由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。

      而场强大小与面密度的关系,由高斯定理推出B、场强大小P导体表面如图,在导体表面外紧靠导体表面取一点P,过P点作导体表面的外法线方向单位矢,则P点场强可表示为(为在方向的投影,可正可负)过P点取一小圆形面元,以为底作一圆柱形高斯面,圆柱面的另一底在导体内部由高斯定理有:(导体的电荷只能分布在导体表面,若面密度为,则面内电荷为)∴ 可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立C、中的是场中全部电荷贡献的合场强,并非只是高斯面内电荷的贡献这一点是由高斯定理得来的P45-46D、一般不谈导体表面上的点的场强导体内部,表面外附近;没提表面上的在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上补充例:习题2.1.1(不讲)解:利用上面的结果,球面上某面元所受的力:,利用对称性知,带有同号电荷的球面所受的力是沿x轴方向:右半球所受的力: =补充例:P53 例1的前半部分证明:对于两个无限大带电平板导体来说:(1)相向的两面上,电荷面密度总是大小相等符号相反;(2)相背的两面上,电荷面密度总是大小相等符号相同。

      证明:(1)由前面静电场中导体的性质知:电荷分布于表面,,导体表面为等势面,导体表面外一点 平板导体所带电荷分布于表面,因为无限大,所以均匀分布,设1、2、3、4面分别带电荷面密度为利用上述性质,选取如图的高斯面,有(由高斯高理):∵ ∴ 又 ∴=0 即故(2)在导体内任取一点P(任意的)∵ 即 ∴如果P点在导体外,如图中的P′点,则(由四板场强迭加得到或由静电平衡时导体表面外一点的场强得到)如果P点在导体外,如图中的点,则三、综合本节内容,得到两个结论:P58—59P58: 1、封闭导体壳(不论接地与否)内部静电场不受壳外电荷的影响;接地封闭导体壳外部静电场不受壳内电荷的影响P58-59:2、设导体壳内电荷为Q1,壳内表面电荷为Q2(=-Q1),壳外表面电荷为Q3,壳外空间电荷为Q4,则无论导体壳是否接地,壳内电荷Q1和导体壳内表面上的电荷Q2,在导体壳内表面之外任一点激发的合场强为零;壳外表面上电荷Q3和壳外电荷Q4,在导体壳外表面之内任一点激发的合场强为零例(补充):习题2、2、3 P79解:根据高斯定理及电荷守恒定律可得出以下结论:(1) QS1=QA QS2=-QA QS3=QA+QB(2) (3)B球接地QS1=QA QS2=-QA QS3=0VB=0(4)A球接地:接地导体球A外还有带电导体球壳B,所以A球表面电荷面密度不为零。

      设A球所带电荷为,则 (电势迭加)(5)在B外再罩一个同心且很薄中性金属壳C后∴ 例1(补充):习题2、3、3, P80 证明:如果内球未接地,此时的球形电容器的电容为:如果内球A接地,这时除内外球可视为一个电容器外,外球表面与地面也形成一个电容器此时的总电容可看成是两个电容器的并联电容而又 R >>R2∴ (是孤立球形导体的电容)∴ 证毕例2(补充): 习题2、3、4 P80 解:(1)此时可将电容器等效成:∴ 即电容器电容变为原来的两倍2)此时的等效图为(B与K相连接)(AB之间的电压其实就是AK之间的电压)即电容器电容变为原来的三倍例3(补充): 2、1、4 P78解:利用静电平衡条件列方程得: (无限大平行金属板)解得:∴将B板接地:(σ4=0)∴ 10。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.