
北师大版高中数学必修3《二章算法初步2算法框图的基本结构及设计22变量与赋值》优质课教案.docx
3页2.2.2 变量与赋值【教学目标】1.理解赋值的含义和变量的概念;2. 能运用构图理解赋值语句表达解决具体问题的过程;3. .培养学生逻辑思维能力与表达能力.【教学重点】赋值的表示方法、结构和用法教教学难点】将具体问题的程序框图转化为程序语句的过程,赋值语句的逻辑关系过程】[来顺序结构及其框图二、问题引航1 .赋值的概念及符号是什么 ?2 .赋值的作用如何?二、例1 :(课本第88页例3)1.赋值语句的一般格式变量=表达式说明:①赋值语句的作用是将表达式所代表的值赋给变量.②赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样;赋值号的左右两边不能对换,赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,如a=b表示用b的值代替变量a原先的值.③格式中右边“表达式”可以是一个数据、常量和算式,如果“表达式”是一个算式时,赋值语句的作用是先计算出“=”右边表达式的值,然后将该值赋给“=”左边的变量,如若a=1, b=2, c=a+b 是指先计算a+b的值3赋给c,而不是将a+b赋给c.1.判一判(正确的打,错误的打“ x ”)⑴变量赋值中,把1赋值给k,写作“ 1=k” .()(2)变量赋值中,若a=1,b=a,则b的结果为1.()(3)赋值语句中的“=”不同于数学中的等号,如在数学中i=i+1无意义,但在赋值语句中,“i=i+1 ”是把“="右边i的值加1再赋给i.()知识点讲解变量与赋值1 .变量的理解(1)研究问题中,可以取不同数值的量,根据研究的需要而取不同的值.(2)与函数中的变量的意义有区别,函数中的变量应有其要求,并且有一个变量与之对应.(3)变量的书写一般用小写字母a,b,c,d,…表示.概念理解:对赋值语句的理解(1) 赋值语句中的“ = ”叫做赋值号, 它和数学中的等号不一样, 其作用是将它右边的一个确定值赋给左边的一个变量, 执行时先计算“= ”右边的值, 再将该值赋给左边的变量, 因此 , 赋值语句具有计算和赋值双重功能.(2) 可以对一个变量多次赋值, 每次赋的新值将取代变量中的原有值.⑶ 赋值号两侧的内容不能随意互换,如A=B与B=A是不同的.(4) 赋值号的左侧只能是一个变量, 如 y=x2-1.(5) 一个赋值语句只能给一个变量赋值,如A=B=C=混错误的.【知识拓展】关于语句中“变量”的理解变量是程序运行时可以变化的量, 可以理解为一个盒子, 既可以向盒子内存放数据, 也可以随时更新盒子内的数据.【思考】程序中如果连续多次对变量赋值 , 那么这个变量的值最后是多少?提示 : 程序中允许多次给变量赋值, 变量的值总是最后一次赋给它的值.三、课堂练习【即时练】1. 下列对赋值语句的描述:①可以给变量提供赋值 ; ②将表达式的值赋给变量; ③可以给一个变量重复赋值; ④不能给一个变量重复赋值 . 其中正确的有.【解析】 1. 根据变量和赋值语句的含义可知①②③是正确的 .答案 : ①②③2. 判断下列赋值语句是否正确 , 并说明理由 .(1)5=m.(2)x+y=0.(3)a=b=2.(4)N=N2.【补偿训练】 “鸡兔同笼”问题是我国古代著名的趣题之一. 大约在 1500 年前 , 《孙子算经》中就记载了这个有趣的问题 . 书中这样描述 : 今有鸡兔同笼, 上有三十五头, 下有九十四足 , 问鸡兔几何 ?试设计一个算法, 输入鸡兔的总数和鸡兔的脚的总数, 分别输出鸡、兔的数量四、课堂小结1. 赋值的含义和变量的概念;2. 赋值语句与数学中等号的区别 .3. 编写一个程序的步骤:首先用自然语言描述问题的一个算法,然后把自然语言转化为程序框图五、作业1. 阅读下列算法步骤 :1.x=3,y=1.2. x= ,y=2y2.3. 输出 x,y.4. x=2x-y,y=y-1.5. 输出 x,y.运行结果是和.。












