
备战2025年高考二轮复习数学专题突破练9 三角函数与解三角形解答题(提升篇).docx
4页专题突破练(分值:52分)学生用书P1551.(13分)(2024陕西西安模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c且cosAa+cosCc=1b,a>b>c.(1)证明:b2=ac;(2)若b=2,sin B=74,求a+c的值.(1)证明因为cosAa+cosCc=1b,所以由余弦定理可得b2+c2-a22abc+a2+b2-c22abc=1b,整理得到b2=ac.(2)解由(1)得b2=ac=4,sin B=74,又因为a>b>c,所以B∈0,π2,则cos B=1-sin2B=34.在△ABC中,由余弦定理得b2=a2+c2-2accos B,即4=a2+c2-6,由a2+c2=10,ac=4,得(a+c)2=a2+c2+2ac=18,所以a+c=32(负值舍去).2.(13分)(2024北京,16)在△ABC中,a=7,A为钝角,sin 2B=37bcos B.(1)求∠A;(2)从条件①、条件②和条件③这三个条件中选择一个作为已知,求△ABC的面积.①b=3;②cos B=1314;③csin A=52 3.注:如果选择条件①、条件②和条件③分别解答,按第一个解答计分.解(1)∵sin 2B=37bcos B,∴2sin B·cos B=37bcos B.又A为钝角,∴B∈0,π2,∴cos B≠0,∴2sin B=37b,∴bsinB=1433.由正弦定理得asinA=bsinB,则7sinA=1433,∴sin A=32,∴A=2π3.(2)若选①.由(1)知A=2π3,由余弦定理得a2=b2+c2-2bccos A,即49=9+c2-2×3×c×cos2π3,即c2+3c-40=0,解得c=5或c=-8(舍去),∴S△ABC=12bcsin A=12×3×5×32=1534.若选②.由cos B=1314,得sin B=3314.又2sin B=37b,∴b=3.由余弦定理得a2=b2+c2-2bccos A,即49=9+c2-2×3×c×cos2π3,即c2+3c-40=0,解得c=5或c=-8(舍去),∴S△ABC=12bcsin A=12×3×5×32=1534.若选③.由csin A=532,得32c=532,∴c=5.由余弦定理得a2=b2+c2-2bccos A,即49=b2+25-2×b×5×cos2π3,即b2+5b-24=0,解得b=3或b=-8(舍去),∴S△ABC=12bcsin A=12×3×5×32=1534.3.(13分)(2024河北衡水一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,△ABC的面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+abcos C.(1)求∠ABC;(2)求2AD+1CD的取值范围.解(1)∵a2=-233S+abcos C,∴a2=-33absin C+abcos C,即a=-33bsin C+bcos C,由正弦定理得,sin A=-33sin∠ABCsin C+sin∠ABCcos C,∴sin(∠ABC+C)=-33sin∠ABCsin C+sin∠ABCcos C,∴cos∠ABCsin C=-33sin∠ABCsin C.∵sin C≠0,∴tan∠ABC=-3.由0<∠ABC<π,得∠ABC=2π3.(2)如图,由(1)知,∠ABC=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6.在△BCD中,由正弦定理得DCsin∠DBC=BDsinC,即DC=2sinπ6sinC=1sinC,在Rt△ABD中,AD=BDsinA=2sinA,∴2AD+1CD=22sinA+11sinC=sin A+sin C.∵∠ABC=2π3,∴A+C=π3,∴2AD+1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sinC+π3.∵0
