好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

三角函数公式大全.doc

7页
  • 卖家[上传人]:汽***
  • 文档编号:478202203
  • 上传时间:2024-01-13
  • 文档格式:DOC
  • 文档大小:50.50KB
  • / 7 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 真诚为您提供优质参考资料,若有不当之处,请指正三角函数公式大全 倒数关系:  tanα ·cotα=1  sinα ·cscα=1  cosα ·secα=1   商的关系:   sinα/cosα=tanα=secα/cscα  cosα/sinα=cotα=cscα/secα  平方关系:  sin2(α)+cos2(α)=1  1+tan2(α)=sec2(α)  1+cot2(α)=csc2(α) 平常针对不同条件的常用的两个公式  tanα *cotα=1 一个特殊公式  (sina+sinθ)(sina-sinθ)=sin(a+θ)sin(a-θ)  证明:(sina+sinθ)(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] 2 cos[(θ+a)/2] sin[(a-θ)/2]  =sin(a+θ)sin(a-θ) 坡度公式:  我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,  即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作  a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式:  正弦:sin α=∠α的对边/∠α 的斜边  余弦:cos α=∠α的邻边/∠α的斜边  正切:tan α=∠α的对边/∠α的邻边  余切:cot α=∠α的邻边/∠α的对边 半角公式: sin2(α/2)=(1-cosα)/2cos2(α/2)=(1+cosα)/2 tan2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα)=0倍角和半角相对而言,两倍角余弦公式的变形可引出半角公式推导过程中可得到一组降次公式,即  万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)]tanα=2tan(α/2)/[1-tan2(α/2)]其他 sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B和差化积: sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)积化和差:  sinαsinβ =-[cos(α+β)-cos(α-β)] /2  cosαcosβ = [cos(α+β)+cos(α-β)]/2  sinαcosβ = [sin(α+β)+sin(α-β)]/2  cosαsinβ = [sin(α+β)-sin(α-β)]/2 公式一:  设α为任意角,终边相同的角的同一三角函数的值相等:  sin(2kπ+α)= sinα  cos(2kπ+α)= cosα  tan(2kπ+α)= tanα  cot(2kπ+α)= cotα  公式二:  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:  sin(π+α)= -sinα  cos(π+α)= -cosα  tan(π+α)= tanα  cot(π+α)= cotα  公式三:  任意角α与 -α的三角函数值之间的关系:  sin(-α)= -sinα  cos(-α)= cosα  tan(-α)= -tanα  cot(-α)= -cotα  公式四:  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:  sin(π-α)= sinα  cos(π-α)= -cosα  tan(π-α)= -tanα  cot(π-α)= -cotα  公式五:  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:  sin(2π-α)= -sinα  cos(2π-α)= cosα  tan(2π-α)= -tanα  cot(2π-α)= -cotα  公式六:  π/2±α及3π/2±α与α的三角函数值之间的关系:  sin(π/2+α)= cosα  cos(π/2+α)= -sinα  tan(π/2+α)= -cotα  cot(π/2+α)= -tanα  sin(π/2-α)= cosα  cos(π/2-α)= sinα  tan(π/2-α)= cotα  cot(π/2-α)= tanα  sin(3π/2+α)= -cosα  cos(3π/2+α)= sinα  tan(3π/2+α)= -cotα  cot(3π/2+α)= -tanα  sin(3π/2-α)= -cosα  cos(3π/2-α)= -sinα  tan(3π/2-α)= cotα  cot(3π/2-α)= tanα  (以上k∈Z)  A·sin(ωt+θ)+ B·sin(ωt+φ) =  √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A2 +B2; +2ABcos(θ-φ)} }  √表示根号,包括{……}中的内容三角函数的诱导公式(六公式)   (4)对于任意非直角三角形,总有  tanA+tanB+tanC=tanAtanBtanC  证:A+B=π-C  tan(A+B)=tan(π-C)  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)  整理可得tanA+tanB+tanC=tanAtanBtanC  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论  (5)cotAcotB+cotAcotC+cotBcotC=1  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)  (7)(cosA) 2;+(cosB) 2+(cosC) 2=1-2cosAcosBcosC  (8)(sinA) 2+(sinB) 2+(sinC) 2=2+2cosAcosBcosC  其他非重点三角函数:(1)tanA= sinA/cosA  (2)csc(a) = 1/sin(a)  (3)sec(a) = 1/cos(a)  (4)sec2a +csc2α=sec 2α.csc2α  二倍角公式:  sin2A=2sinA·cosA  cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A  tan2A=(2tanA)/(1-tan2A) 三倍角公式:  sin3α=3sinα-4sin3 α=4sinα·sin(π/3+α)sin(π/3-α)  cos3α=4cos3α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)  tan3a =tan(α)(-3+tan2α)/(-1+3tan2α)=tan a · tan(π/3+a)· tan(π/3-a)  三倍角公式推导   sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin3a  cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos2a)cosa=4cos3a-3cosa  sin3a=3sina-4sin3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2) 2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)  =4cosa2cos[(a+30°)/2]cos[(a-30°)/2] {-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a)  上述两式相比可得  tan3a=tanatan(60°-a)tan(60°+a)  四倍角公式: sin4A=-4 (cosA.sinA(2sin2A-1)) cos4A=1+(-8cos2A+8cos4A) tan4A=(4tanA-4tan3A)/(1-6tan2A+tan4A) 五倍角公式: sin5A=16sin5A-20sin3A+5sinA cos5A=16cos5A-20cos3A+5cosA tan5A=tanA (5-10tan2A+tan4A)/(1-10tan2A+5tan4A) 六倍角公式: sin6A=2(cosAsinA(2sinA+1)(2sinA-1)(-3+4sin2A)cos6A=(-1+2cos2A) 16cos4A-16cos2A+1) tan6A=(-6tanA+20tan3A-6tan5A)/(-1+15tan2A-15tan4A+tan6A) 七倍角公式: sin7A=-sinA(5。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.