
2022-2022年考研数学一真题及答案.docx
4页2022-2022年考研数学一真题及答案 2022考研数学一真题及答案 一、选择题 1—8小题.每小题4分,共32分. 1.若函数1cos 0(),0x x f x b x ?->? =?≤? 在0x =处连续,则 (A )12ab = (B )1 2 ab =-(C )0ab =(D )2ab = 0001112lim ()lim lim 2x x x x x f x ax ax a +++→→→-=== ,0lim ()(0)x f x b f - →==,要使函数在0x =处连续,必须满足11 22 b ab a =?=.所以应该选(A ) 2.设函数()f x 是可导函数,且满足()()0f x f x '>,则 (A )(1)(1)f f >- (B )11()()f f - (D )11()()f f ,也就是()2 ()f x 是单调增加函数.也 就得到()()22 (1)(1)(1)(1)f f f f >-?>-,所以应该选(C ) 3.函数2 2 (,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为 (A )12 (B )6 (C )4 (D )2 22,,2f f f xy x z x y z ???===???,所以函数在点(1,2,0)处的梯度为()4,1,0gradf =,所以2 2 (,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为 ()01 4,1,0(1,2,2)23f gradf n n ?=?=?=?应该选(D ) 4.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲的速度曲线1()v v t =(单位:米/秒),虚线表示乙的速度曲线2()v v t =(单位:米/秒),三块阴影部分的面积分别为10,20,3,计时开始后乙追上甲的时刻为0t ,则( ) (A )010t = (B )01520t ? =?≤? 在0x =处连续,则 (A )12ab = (B )1 2 ab =-(C )0ab =(D )2ab = 0001112lim ()lim lim 2x x x x x f x ax ax a +++→→→-=== ,0lim ()(0)x f x b f - →==,要使函数在0x =处连续,必须满足11 22 b ab a =?=.所以应该选(A ) 2.设函数()f x 是可导函数,且满足()()0f x f x '>,则 (A )(1)(1)f f >- (B )11()()f f - (D )11()()f f ,也就是()2 ()f x 是单调增加函数.也 就得到()()22 (1)(1)(1)(1)f f f f >-?>-,所以应该选(C ) 3.函数2 2 (,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为 (A )12 (B )6 (C )4 (D )2 22,,2f f f xy x z x y z ???===???,所以函数在点(1,2,0)处的梯度为()4,1,0gradf =,所以2 2 (,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为 ()01 4,1,0(1,2,2)23f gradf n n ?=?=?=?应该选(D ) 4.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲的速度曲线1()v v t =(单位:米/秒),虚线表示乙的速度曲线2()v v t =(单位:米/秒),三块阴影部分的面积分别为10,20,3,计时开始后乙追上甲的时刻为0t ,则( ) (A )010t = (B )01520t << 。
