
统计学第六版贾俊平第8章.ppt
112页第 8 章 假设检验,第 8 章 假设检验,8.1 假设检验的基本问题 8.2 一个正态总体参数的检验 8.3 两个正态总体参数的检验 8.4 假设检验中的其他问题,假设检验在统计方法中的地位,学习目标,了解假设检验的基本思想 掌握假设检验的步骤 对实际问题作假设检验 利用置信区间进行假设检验 利用P - 值进行假设检验,,8.1 假设检验的基本问题,假设问题的提出 假设的表达式 两类错误 假设检验中的值 假设检验的另一种方法 单侧检验,假设检验的概念与思想,什么是假设? (hypothesis), 对总体参数的的数值所作的一种陈述 总体参数包括总体均值、比例、方差等 分析之前必需陈述,我认为该地区新生婴儿的平均体重为3190克!,,什么是假设检验? (hypothesis testing),事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立 有参数假设检验和非参数假设检验 采用逻辑上的反证法,依据统计上的小概率原理,假设检验的基本思想,,,,,,,,,,,. 因此我们拒绝假设 = 50,样本均值,m,= 50,抽样分布,H0,假设检验的过程,假设检验的步骤 提出假设 确定适当的检验统计量 规定显著性水平 计算检验统计量的值 作出统计决策,提出原假设和备择假设, 什么是原假设?(null hypothesis) 待检验的假设,又称“0假设” 研究者想收集证据予以反对的假设 3. 总是有等号 , 或 4. 表示为 H0 H0: 某一数值 指定为 = 号,即 或 例如, H0: 3190(克),为什么叫0假设?, 什么是备择假设?(alternative hypothesis) 与原假设对立的假设,也称“研究假设” 研究者想收集证据予以支持的假设总是有不等号: , 或 表示为 H1 H1: <某一数值,或 某一数值 例如, H1: < 3910(克),或 3910(克),提出原假设和备择假设, 什么检验统计量? 1. 用于假设检验决策的统计量 2. 选择统计量的方法与参数估计相同,需考虑 是大样本还是小样本 总体方差已知还是未知 检验统计量的基本形式为,确定适当的检验统计量,规定显著性水平 (significant level), 什么显著性水平? 1. 是一个概率值 2. 原假设为真时,拒绝原假设的概率 被称为抽样分布的拒绝域 3. 表示为 (alpha) 常用的 值有0.01, 0.05, 0.10 4. 由研究者事先确定,作出统计决策,计算检验的统计量 根据给定的显著性水平,查表得出相应的临界值z或z/2, t或t/2 将检验统计量的值与 水平的临界值进行比较 得出接受或拒绝原假设的结论,假设检验中的小概率原理,假设检验中的小概率原理, 什么小概率? 1. 在一次试验中,一个几乎不可能发生的事件发生的概率 2. 在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设 3. 小概率由研究者事先确定,假设检验中的两类错误 (决策风险),假设检验中的两类错误,1. 第一类错误(弃真错误) 原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为 被称为显著性水平 2. 第二类错误(取伪错误) 原假设为假时接受原假设 第二类错误的概率为(Beta),H0: 无罪,假设检验中的两类错误 (决策结果),假设检验就好像一场审判过程,统计检验过程, 错误和 错误的关系,影响 错误的因素,1. 总体参数的真值 随着假设的总体参数的减少而增大 2. 显著性水平 当 减少时增大 3. 总体标准差 当 增大时增大 4. 样本容量 n 当 n 减少时增大,假设检验中的 P 值,什么是P 值? (P-value),是一个概率值 如果原假设为真,P-值是抽样分布中大于或小于样本统计量的概率 左侧检验时,P-值为曲线上方小于等于检验统计量部分的面积 右侧检验时,P-值为曲线上方大于等于检验统计量部分的面积 被称为观察到的(或实测的)显著性水平 H0 能被拒绝的的最小值,双侧检验的P 值,左侧检验的P 值,右侧检验的P 值,利用 P 值进行检验 (决策准则),单侧检验 若p-值 > ,不能拒绝 H0 若p-值 /2, 不能拒绝 H0 若p-值 < /2, 拒绝 H0,双侧检验和单侧检验,双侧检验与单侧检验 (假设的形式),双侧检验 (原假设与备择假设的确定),属于决策中的假设检验 不论是拒绝H0还是不能拒绝H0,都必需采取相应的行动措施 例如,某种零件的尺寸,要求其平均长度为10cm,大于或小于10cm均属于不合格 我们想要证明(检验)大于或小于这两种可能性中的任何一种是否成立 建立的原假设与备择假设应为H0: = 10 H1: 10,双侧检验 (显著性水平与拒绝域 ),,双侧检验 (显著性水平与拒绝域),,双侧检验 (显著性水平与拒绝域),双侧检验 (显著性水平与拒绝域),单侧检验 (原假设与备择假设的确定),将研究者想收集证据予以支持的假设作为备择假设H1 例如,一个研究者总是想证明自己的研究结论是正确的 一个销售商总是想正确供货商的说法是不正确的 备择假设的方向与想要证明其正确性的方向一致 将研究者想收集证据证明其不正确的假设作为原假设H0 先确立备择假设H1,单侧检验 (原假设与备择假设的确定),一项研究表明,采用新技术生产后,将会使产品的使用寿命明显延长到1500小时以上。
检验这一结论是否成立 研究者总是想证明自己的研究结论(寿命延长)是正确的 备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为H0: 1500 H1: 1500,单侧检验 (原假设与备择假设的确定),一项研究表明,改进生产工艺后,会使产品的废品率降低到2%以下检验这一结论是否成立 研究者总是想证明自己的研究结论(废品率降低)是正确的 备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为H0: 2% H1: < 2%,单侧检验 (原假设与备择假设的确定),某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在1000小时以上如果你准备进一批货,怎样进行检验 检验权在销售商一方 作为销售商,你总是想收集证据证明生产商的说法(寿命在1000小时以上)是不是正确的 备择假设的方向为“<”(寿命不足1000小时) 建立的原假设与备择假设应为H0: 1000 H1: < 1000,单侧检验 (显著性水平与拒绝域),,左侧检验 (显著性水平与拒绝域),左侧检验 (显著性水平与拒绝域),右侧检验 (显著性水平与拒绝域),右侧检验 (显著性水平与拒绝域),,8.2 一个正态总体参数的检验,检验统计量的确定 总体均值的检验 总体比例的检验 总体方差的检验,一个总体参数的检验,,,总体均值检验,总体均值的检验 (检验统计量),总体 是否已知?,总体均值的检验 (2 已知或2未知大样本),1. 假定条件 总体服从正态分布 若不服从正态分布, 可用正态分布来近似(n30) 使用Z-统计量2 已知:2 未知:,2 已知均值的检验 (例题分析),【例】某机床厂加工一种零件,根据经验知道,该厂加工零件的椭圆度近似服从正态分布,其总体均值为0=0.081mm,总体标准差为= 0.025 。
今换一种新机床进行加工,抽取n=200个零件进行检验,得到的椭圆度为0.076mm试问新机床加工零件的椭圆度的均值与以前有无显著差异?(=0.05),,,双侧检验,2 已知均值的检验 (例题分析),H0: = 0.081 H1: 0.081 = 0.05 n = 200 临界值(s):,检验统计量:,决策:,结论:,在 = 0.05的水平上拒绝H0,有证据表明新机床加工的零件的椭圆度与以前有显著差异,2 已知均值的检验 (P 值的计算与应用),第1步:进入Excel表格界面,选择“插入”下拉菜单 第2步:选择“函数”点击 第3步:在函数分类中点击“统计”,在函数名的菜单下选择字符“NORMSDIST”然后确定 第4步:将Z的绝对值2.83录入,得到的函数值为0.997672537P值=2(1-0.997672537)=0.004654P值远远小于,故拒绝H0,2 已知均值的检验 (小样本例题分析),【例】根据过去大量资料,某厂生产的灯泡的使用寿命服从正态分布N~(1020,1002)现从最近生产的一批产品中随机抽取16只,测得样本平均寿命为1080小时。
试在0.05的显著性水平下判断这批产品的使用寿命是否有显著提高?(=0.05),,单侧检验,2 已知均值的检验 (小样本例题分析),H0: 1020 H1: > 1020 = 0.05 n = 16 临界值(s):,检验统计量:,在 = 0.05的水平上拒绝H0,有证据表明这批灯泡的使用寿命有显著提高,决策:,结论:,2 未知大样本均值的检验 (例题分析),【例】某电子元件批量生产的质量标准为平均使用寿命1200小时某厂宣称他们采用一种新工艺生产的元件质量大大超过规定标准为了进行验证,随机抽取了100件作为样本,测得平均使用寿命1245小时,标准差300小时能否说该厂生产的电子元件质量显著地高于规定标准? (=0.05),单侧检验,2 未知大样本均值的检验 (例题分析),H0: 1200 H1: >1200 = 0.05 n = 100 临界值(s):,检验统计量:,在 = 0.05的水平上不能拒绝H0,不能认为该厂生产的元件寿命显著地高于1200小时,决策:,结论:,总体均值的检验 (2未知小样本),1. 假定条件 总体为正态分布 2未知,且小样本 2. 使用t 统计量,2 未知小样本均值的检验 (例题分析),【例】某机器制造出的肥皂厚度为5cm,今欲了解机器性能是否良好,随机抽取10块肥皂为样本,测得平均厚度为5.3cm,标准差为0.3cm,试以0.05的显著性水平检验机器性能良好的假设。
双侧检验,2 未知小样本均值的检验 (例题分析),H0: = 5 H1: 5 = 0.05 df = 10 - 1 = 9 临界值(s):,检验统计量:,在 = 0.05的水平上拒绝H0,说明该机器的性能不好,决策:,结论:,,2 未知小样本均值的检验 (P 值的计算与应用),第1步:进入Excel表格界面,选择“插入”下拉菜单 第2步:选择“函数”点击,并在函数分类中点击“统计” ,然后,在函数名的菜单中选择字符“TDIST”,确定 第3步:在弹出的X栏中录入计算出的t值3.16 在自由度(Deg-freedom)栏中录入9在Tails栏中录入2,表明是双侧检验(单测检验则在该栏内录入1)P值的结果为0.01155<0.025,拒绝H0,2 未知小样本均值的检验 (例题分析),【例】一个汽车轮胎制造商声称,某一等级的轮胎的平均寿命在一定的汽车重量和正常行驶条件下大于40000公里,对一个由20个轮胎组成的随机样本作了试验,测得平均值为41000公里,标准差为5000公里已知轮胎寿命的公里数服从正态分布,我们能否根据这些数据作出结论,该制造商的产品同他所说的标准相符?( = 0.05),单侧检验!,均值的单尾 t 检验 (计算结果),H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):,检验统计量:,在 = 0.05的水平上不能拒绝H0,有证据表明轮胎使用寿命显著地大于40000公里,决策:,结论:,总体比例的检验 (Z 检验),适用的数据类型,,,一个总体比例检验,假定条件 有两类结果 总体服从二项分布 可用正态分布来近似 比例检验的 Z 统计量,。












