
九年级数学(上册)知识点归纳.doc
16页.22.1 一元二次方程 知识点一 一元二次方程的定义 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程 注意一下几点: ① 只含有一个未知数;②未知数的最高次数是2;③是整式方程 知识点二 一元二次方程的一般形式 一般形式:ax+ bx + c = 0(a ≠ 0).其中,ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项 知识点三 一元二次方程的根 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根方程的解的定义是解方程过程中验根的依据 22.2 降次——解一元二次方程 22.2.1配方法 知识点一 直接开平方法解一元二次方程 (1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方一般地,对于形如x=a(a≥0)的方程,根据平方根的定义可解得x1=,x2=. (2) 直接开平方法适用于解形如x=p或(mx+a)=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根 (4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根 知识点二 配方法解一元二次方程 通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解 配方法的一般步骤可以总结为:一移、二除、三配、四开 (1) 把常数项移到等号的右边; ⑵方程两边都除以二次项系数; ⑶ 方程两边都加上一次项系数一半的平方,把左边配成完全平方式; ⑷ 若等号右边为非负数,直接开平方求出方程的解 22.2.2公式法 知识点一 公式法解一元二次方程 (1) 一般地,对于一元二次方程ax+bx+c=0(a≠0),如果b-4ac≥0,那么方程的两个根为x=,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。
(2) 一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax+bx+c=0(a≠0)的过程 (3) 公式法解一元二次方程的具体步骤: ① 方程化为一般形式:ax+bx+c=0(a≠0),一般a化为正值 ②确定公式中a,b,c的值,注意符号; ③求出b-4ac的值; ④若b-4ac≥0,则把a,b,c和b-4ac的值代入公式即可求解,若b-4ac<0,则方程无实数根 知识点二 一元二次方程根的判别式 式子b-4ac叫做方程ax+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b-4ac. △>0,方程ax+bx+c=0(a≠0)有两个不相等的实数根 一元二次方程 △=0,方程ax+bx+c=0(a≠0)有两个相等的实数根 根的判别式 △<0,方程ax+bx+c=0(a≠0)无实数根 22.2.3 因式分解法 知识点一 因式分解法解一元二次方程 (1) 把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法 (2) 因式分解法的详细步骤: ① 移项,将所有的项都移到左边,右边化为0; ② 把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式; ③ 令每一个因式分别为零,得到一元一次方程; ④ 解一元一次方程即可得到原方程的解。
知识点二 用合适的方法解一元一次方程 方法名称 理论依据 适用围 直接开平方法 平方根的意义 形如x=p或(mx+n)=p(p≥0) 配方法 完全平方公式 所有一元二次方程 公式法 配方法 所有一元二次方程 因式分解法 当ab=0,则a=0或b=0 一边为0,另一边易于分解成两个一次因式的积的一元二次方程 22.2.4一元二次方程的根与系数的关系 若一元二次方程x+px+q=0的两个根为x1,x2,则有x1+x2=-p,x1x2=q. 若一元二次方程ax+bx+c=0(a≠0)有两个实数根x1,x2,则有x1+x2=-b/a,,x1x2=c/a 22.3 实际问题与一元二次方程 知识点一 列一元二次方程解应用题的一般步骤: (1) 审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以与它们之间的等量关系。
(2) 设:是指设元,也就是设出未知数 (3) 列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程 (4) 解:就是解方程,求出未知数的值 (5) 验:是指检验方程的解是否保证实际问题有意义,符合题意 (6) 答:写出答案 知识点二 列一元二次方程解应用题的几种常见类型 (1) 数字问题 三个连续整数:若设中间的一个数为x,则另两个数分别为x-1,x+1 三个连续偶数(奇数):若中间的一个数为x,则另两个数分别为x-2,x+2 三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c,则这个三位数是100a+10b+c. (2) 增长率问题 设初始量为a,终止量为b,平均增长率或平均降低率为x,则经过两次的增长或降低后的等量关系为a(1)=b (3)利润问题 利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润总销售量;③利润=成本利润率 (4)图形的面积问题 根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
二次函数 1.定义:一般地,如果y=ax+bx+c(a,b,c是常数,),那么y叫做x的二次函数. 2.二次函数y=ax的性质 (1)抛物线y=ax的顶点是坐标原点,对称轴是y轴.(2)函数y=ax的图像与的符号关系. ①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点 3.二次函数y=ax+bx+c 的图像是对称轴平行于(包括重合)y轴的抛物线. 4.二次函数y=ax+bx+c用配方法可化成:y=a(x-h)+k的形式,其中h=-b/2a,k=4ac-b/4a. 5.二次函数由特殊到一般,可分为以下几种形式: ①y=ax;②y=ax+k;③y=a(x-h);④y=a(x-h)+k;⑤y=ax+bx+c. 6.抛物线的三要素:开口方向、对称轴、顶点. ①a决定抛物线的开口方向: 当a>0时,开口向上;当a<0时,开口向下;相等,抛物线的开口大小、形状一样. ②平行于y轴(或重合)的直线记作x=h.特别地,y轴记作直线x=0. 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a一样,那么抛物线的开口方向、开口大小完全一样,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:,∴顶点是,对称轴是直线. (2)配方法:运用配方法将抛物线的解析式化为的形式,得到顶点为(h,k),对称轴是. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★9.抛物线中,a,b,c的作用 (1)a决定开口方向与开口大小,这与中的a完全一样. (2)b和a共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故: ①b=0时,对称轴为y轴;② (即a、b同号)时,对称轴在y轴左侧; ③ (即a、b异号)时,对称轴在y轴右侧. (3)c的大小决定抛物线与y轴交点的位置. 当x=0时,y=c,∴抛物线与y轴有且只有一个交点(0,c): ① c=0,抛物线经过原点; ②c>0,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则. 10.几种特殊的二次函数的图像特征如下: 函数解析式 开口方向 对称轴 顶点坐标 x=0(y轴) (0,0) 当a>0时 x=0(y轴) (0,k) 开口向上 x=h(h,0) 当a<0时 x=h(h,k) 开口向下 11.用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对x、y的值,通常选择一般式. (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:. 12.直线与抛物线的交点 (1)y轴与抛物线得交点为(0,c) (2)与y轴平行的直线x=h与抛物线有且只有一个交点(h,). (3)抛物线与x轴的交点 二次函数的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程 的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①两个交点抛物线与x轴相交; ② 一个交点(顶点在x轴上)抛物线与x轴相切; ③没有交点抛物线与x轴相离. (4)平行于x轴的直线与抛物线的交点 同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是的两个实数根. (5)一次函数的图像l与二次函数的图像G的交点,由方程组 的解的数目来确定: ①方程组有两组不同的解时l与G有两个交点; ③ 程组只有一组解时l与G只有一个交点;④ 程组无解时l与G没有交点. (6)抛物线与轴两交点之间的距离:若抛物线与x轴两交点为,由于、是方程的两个根,故13.二次函数与一元二次方程的关系: (1)一元二次方程就是二次函数当函数y的值为0时的情况. (2)二次函数的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数的图象与x轴有交点时,交点的横坐标就是当时自变量x的值,即一元二次方程的根. (3)当二次函数的图象与x轴有两个交点。












