
全国各地2015年中考数学试卷解析分类汇编(第2期)专题25 矩形菱形与正方形.doc
72页矩形菱形与正方形一.选择题1.(2015•安徽, 第9题4分)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( ) A.2 B. 3 C. 5 D. 6考点: 菱形的性质;矩形的性质.分析: 连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.解答: 解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.点评: 本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.2.(2015•宜昌,第11题3分)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( ) A.圆形铁片的半径是4cmB.四边形AOBC为正方形 C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2考点:切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算..专题:应用题.分析:由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.解答:解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;S扇形OAB==4π,故D正确.故选C.点评:本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.3. (2015广西崇左第7题3分)下列命题是假命题的是( ) A.对角线互相垂直且相等的平行四边形是正方形 B.对角线互相垂直的矩形是正方形 C.对角线相等的菱形是正方形 D.对角线互相垂直的四边形是正方形 D【解析】选项逐项分析正误A对角线互相垂直的平行四边形是菱形,对角线互相等的平行四边形是矩形,对角线即垂直又相等的平行四边形是正方形√B对角线互相垂直的矩形是正方形√C对角线互相相等的矩形是正方形√D对角线即垂直又相等的四边形不一定是平行四边形,故不是正方形×点评:从对角线的角度来判断特殊平行四边形,首先要保证是平行四边形,即要保证对角线互相平分,在此基础上再添加对角线相等或垂直.4.(2015•通辽,第10题3分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为( ) A. 8 B. 20 C. 8或20 D. 10考点: 菱形的性质;解一元二次方程-因式分解法.分析: 边AB的长是方程y2﹣7y+10=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.解答: 解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.点评: 本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可. 5.(2015•滨州,第8题3分)顺次连接矩形ABCD各边中点,所得四边形必定是( ) A. 邻边不等的平行四边形 B. 矩形 C. 正方形 D. 菱形考点: 中点四边形.分析: 作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.解答: 解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故选:D.点评: 本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.6.(2015•山东泰安,第20题3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为( ) A.2 B. 4 C. D. 2考点: 翻折变换(折叠问题)..分析: 根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.解答: 解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,(4)2+(6﹣x)2=(6+x)2,解得x=4.故选:B.点评: 本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件EF=EC是解题的关键.7.(2015•娄底,第5题3分)下列命题中错误的是( ) A. 平行四边形的对角线互相平分 B. 菱形的对角线互相垂直 C. 同旁内角互补 D. 矩形的对角线相等考点: 命题与定理.分析: 根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答: 解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评: 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(2015•长沙,第5题3分)下列命题中,为真命题的是( ) A. 六边形的内角和为360度 B. 多边形的外角和与边数有关 C. 矩形的对角线互相垂直 D. 三角形两边的和大于第三边考点: 命题与定理.分析: 根据六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系判断即可.解答: 解:A、六边形的内角和为720°,错误;B、多边形的外角和与边数无关,都等于360°,错误;C、矩形的对角线相等,错误;D、三角形的两边之和大于第三边,正确;故选D.点评: 本题考查命题的真假性,是易错题注意对六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系的准确掌握9.(2015•昆明第7题,3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形,其中一定成立的是( ) A. ①② B. ③④ C. ②③ D. ①③考点: 菱形的性质..分析: 根据菱形的性质即可直接作出判断.解答: 解:根据菱形的对角线互相垂直平分可得:①正确;②错误;根据菱形的对角线平分一组内角可得③正确.④错误.故选D.点评: 本题考查了菱形的性质,正确记忆性质的基本内容是关键.10. (2015•温州第8题4分)如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是( ) A.y= B. y= C. y=2 D. y=3考点: 菱形的性质;等边三角形的判定与性质;解直角三角形..分析: 由在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,可得△OCD与△OCE是等腰直角三角形,即可得OC垂直平分DE,求得DE=2x,再由∠DFE=∠GFH=120°,可求得C与DF,EF的长,继而求得△DF的面积,再由菱形FGMH中,FG=FE,得到△FGM是等边三角形,即可求得其面积,继而求得答案.解答: 解:∵ON是Rt∠AOB的平分线,∴∠DOC=∠EOC=45°,∵DE⊥OC,∴∠ODC=∠OEC=45°,∴CD=CE=OC=x,∴DF=EF,DE=CD+CE=2x,∵∠DFE=∠GFH=120°,∴∠CEF=30°,∴CF=CE•tan30°=x,∴EF=2CF=x,∴S△DEF=DE•CF=x2,∵四边形FGMH是菱形,∴FG=MG=FE=x,∵∠G=180°﹣∠GFH=60°,∴△FMG是等边三角形,∴S△FGH=x2,∴S菱形FGMH=x2,∴S阴影=S△DEF+S菱形FGMH=x2.故选B.点评: 此题考查了菱形的性质、等腰直角三角形的性质、等边三角形的判定与性质以及三角函数等知识.注意证得△OCD与△OCE是等腰直角三角形,△FGM是等边三角形是关键.11. (2015年浙江衢州8,3分)如图,已知某广场菱形花坛的周长是24米,,则花坛对角线的长等于【 】 A. 米 B. 米 C. 米 D. 米【答案】A.【考点】菱形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】∵菱形花坛的周长是24,∴,,.∵,∴.∴(米).故选A.12.(2015年重庆B第12题4分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( ) A.6 B.-6 C.12 D.-1213.(2015•四川攀枝花第10题3分)如图,在菱形ABCD中,AB=B。












