好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

hjc本构模型翻译资料资料.doc

12页
  • 卖家[上传人]:w****i
  • 文档编号:98363105
  • 上传时间:2019-09-10
  • 文档格式:DOC
  • 文档大小:525.81KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 基于大应变、高应变率、高压力的混凝土计算基本模型T.J.Holmquist 、 Dr.G.R.Johnson美国明尼苏达州霍普金斯阿连特科技股份有限公司Dr.W.H.Cook美国佛罗里达州埃格林空军基地武器理事会怀特实验室 本文介绍了基于大应变、高应变率、高压力的混凝土计算基本模型;该模型能适用于采用拉格朗日和欧拉定律的计算混凝土的等效强度通过应力、应变速率和损伤状态来描述其中,应力通过体积应变来描述,并考虑永久破碎的影响;损伤累积通过混凝土塑性体积应变、等效塑性应变和应力来描述与混凝土等效强度密切相关的几个组成要素对等效强度的影响随着损伤的累积逐渐退化本文中的几个常量参数是针对具有0.048GPa(7000psi)无侧限抗压强度的混凝土而确定的,并用一个例子来阐述该计算模型本文中的计算均是建立在以不同速度对目标混凝土进行侵彻作用的影响之上,并将计算结果与实验数据作对比引言目前,针对使用计算机编码对混凝土的特性进行模型化已经做出了大量努力大量相关的研究工作主要是在小应变、低应变率和低压力的前提下进行的,以此服务于土木工程应用而针对承受大应变、高应变率和高压力的混凝土,有关其作用影响计算的模型化工作相对较少。

      本文介绍了基于大应变、高应变率、高压力的混凝土计算基本模型:该模型能适用于采用拉格朗日和欧拉定律的计算,与Osborn[1]提出的模型类似,但不同的是该模型得到拓展,考虑了在压力和空隙率的作用影响下材料的损伤、应变速率和永久破碎等因素下文是关于模型的介绍和对0.048GPa(7000psi)无侧限抗压强度混凝土有关常量参数的确定过程,以及混凝土的侵彻计算并与实验数据作对比模型介绍该模型的总体形式如图(1)所示模型强度部分如图(1)上部所示等效应力的一般化定义为:式中,指实际等效应力,指准静态单轴抗压强度特定表达式为: (1)其中,D指损伤度(0≤D≤1.0),指无量纲静水压力(其中P指实际压力),指无量纲应变率(其中为实际应变率,为参考应变率)无量纲最大静水拉力为,其中,T指混凝土能承受的最大静水拉力混凝土常量参数包括A、B、N、C以及SMAX其中,A指标准凝聚强度,B指标准强度增大系数,N指压力增大指数,C指应变率敏感系数,SMAX指标准最大发展强度混凝土断裂损伤如图1中左下角图所示,其损伤发展累积过程与Johnson-Cook断裂模型[2]相似Johnson-Cook断裂模型描述的是等效塑性应变过程中的损伤累积,而本文模型从等效塑性应变和塑性体积应变两方面讨论损伤图 1 模型描述累积,公式表示为: (2)其中,和表示一个计算循环内的等效塑性应变和塑性体积应变;表示在常压作用下断裂的塑性应变。

      特定表达式为: (3)式中,D1和D2为损伤常量,P*和T*同前文定义由式3可以明显看出,当P*=-T*时混凝土材料不能承受任何塑性应变且由图1知,断裂塑性应变随着P*的增大而增大;三分之一的恒定损伤,即EFMIN在材料断裂过程中用于产生一定的塑性应变由此可知,在低振动拉伸波作用下材料可抑制断裂产生由塑性体积应变产生的损伤见式(2)和式(3),因为在混凝土内空隙的塌陷过程中混凝土的凝聚强度会消失在大多情况下,绝大部分的损伤是由等效塑性应变产生的混凝土所受静水压力和体积的关系见图1右下角图压力和体积的函数关系分成三个阶段:第一个阶段是线弹性阶段,此时P≤Pc,Pc和μc在单轴压缩试验中分别表示压力和塑性体积应变,T同前文定义;弹性模量表示为第二阶段称为过渡阶段,此时在这个阶段中,混凝土中的空隙被逐渐挤压缩小从而使混凝土产生塑性体积应变若在此阶段卸载,则按前后两阶段的曲线斜率进行内插,按内插后的路径进行卸载第三阶段过程中,材料完全密实(所有空隙从混凝土中挤压出)当压力达到时,混凝土材料中所有的空隙完全挤压消失这一阶段压力和体积应变的关系可表示为: (4)其中, 采用修改后的体积应变,从而使常量参数(K1、K2、K3)与混凝土之前所用参数达到相同作用。

      标准的体积应变为,为当前密度,为初始密度压实体积应变为,为颗粒密度,材料密实状态的密度均相同对于拉力,在弹性阶段为,在完全密实阶段为,在过渡阶段为内插因子为,为卸载的最大体积应变,为压力时的体积应变去掉高阶项()后,相同的方法可应用于加压卸载,拉力的范围为T(1-D)确定常量参数图2显示的是一种无侧限抗压强度为=0.048GPa(7000psi)的混凝土材料模型目前用于确定相关常量的大部分实验数据来源于Hanchak[3]等,混凝土强度也是在不同围压下确定的虽然这些常量与试验数据吻合,但是在一些实例中并没有获得足够数据能明确地确定单个常量模型建立的第一步是确定混凝土强度的常量参数相关常量A、B、N、C、SMAX和T要求能完全反映混凝土材料强度特性最大静水拉力T应小于材料所能承受的最大主拉力从参考文献[3]中的数据知T=0.004GPa,由给出无量纲最大静水压力为T*=0.083图3表示的是各种混凝土的标准单轴抗压强度随应变率的函数关系[4-6]应变速率影响是否取决于混凝土初始强度或者误差是否在实验误差范围之内尚不明确,所以假定应变率不取决于初始强度并且对所有混凝土都不变虽然图3显示了应变速率产生的有力影响,但是强度的增长不仅仅取决于应变率,而且还包括压力增长的影响。

      当应力状态由单向应力变为三向应力时,应变率更高,此时这一结论尤为正确为了获得只在应变率单一条件下的影响,则必须将压力的影响排除图4显示了排除压力影响的处理方法,并以此获得应变率常量在图4左图显示了对应图3中三个应变率的单轴抗压强度随压力的函数关系,并假定一个单向应力状态过高的变化率()没有采用,因为不清楚该情况下的应力状态根据无量纲最大静水压力T*=0.083,然后通过每个测试数据画一条直线,各直线斜率的差别提供了确定应变率影响的方法混凝土强度改变仅受应变率影响的点确定为在恒定的无量纲压力(P*=1/3)时对应曲线上的数值所在位置通过最小二乘法拟合该处三个数据点,如图4所示,得到常量C=0.007剩余的混凝土强度常量参数A、B、N以及SMAX,可以通过Hanchak etal[3]提供的测试数据并进行一些相应的假定来得到常量A用以定义材料在时的标准化凝聚强度材料的凝聚强度指在给定的压力作用下材料在没有损伤状态和完全破碎状态下的强度差值虽然测试数据在一个较大的压力范围内对混凝土材料的行为作出了大致的描述,但是在更低的压力()范围内的一些试验数据数据显示,此时的混凝土凝聚强度也非常明显由于缺少所关注的这一范围内的测试数据,所以在准静态条件()下假定混凝土凝聚强度为0.75fc’。

      一般地,时给定A=0.79 常量B和N用以定义时混凝土标准化断裂强度,同时使测试数据限制在较小的范围内直接设定B=1.60、N=0.61,此时能与数据很好契合,如图2所示最后定义SMAX测试数据表明,当混凝土抗压强度不再随压力的增加而增加时,可得出SMAB=7.0虽然由于缺少相应数据而做了一些假定来确定这些强度常量参数,但是该模型能很好契合已有数据图 2 f'c=0.048GPa(7000psi)混凝土模型描述图 3 混凝土强度随应变速率的函数 图 4 应变率敏感性和混凝土常量确定接下来确定损伤模型的常量参数D1、D2和EFMIN图5显示的是对一个圆柱形试件进行循环加载的应力-应变结果[7]从测试结果中可以定义一个假定失效面,该失效面显示在轴向应变达到时试件完全丧失强度如果轴向弹性应变和体积应变μ变为零,破裂时等效塑性应变为因为材料的塑性应变发生在应力范围为0~1/3fc’之内,所以假定有以下理由:图5中,根据其初始模量可知弹性应变会比较小,并且在低应力()时体积应变也可能比较小损伤模型常量参数D1通过从单轴压缩试验中得到的T*=0.083和等效塑性应变来确定根据T*=0.083时的初始损伤曲线并满足P*=1/6时的等效断裂塑性应变,确定出D1=0.04;对于常量参数D2,由于试验数据不足,故直接取D2=1.0;为抑制由振动拉伸波产生的破裂,设定EFMIN=0.01。

      最终,压力参数、、、、以及可被定义出来其中是通过采用杨氏模量(E=35.7GPa)和泊松比(ν=0.2)[8]的弹性理论确定的;空隙率表示为,其中, 混凝土的颗粒密度没有给出,Grady[9]研究过相似的混凝土,故这里直接采用其有用数值;从Hugoniot[10]的花岗岩和石英的冲击试验数据中得到材料完整破裂曲线的参数, 花岗岩和石英的平均密度大约为2640kg/m3,该颗粒密度是恒定不变的通过合理的数据拟合,得到混凝土挤压空隙直到密实时的压应力为,如图2所示图 5 由偏应力和剪切应变产生的混凝土软化(损伤)这种具有无侧限抗压强度为=0.048GPa的混凝土材料,其所有常量参数均被定义并汇总于表1图6为一个具体的例子用以说明该模型的运用及相关常量参数如何使用该例子通过模拟准静态条件下的单向压缩应变试验来阐述本模型从到‚过程虽然存在少量的塑性体积应变产生,但材料的行为基本按线性变化;在‚处出现屈服面,同时等效塑性应变开始累积;从‚到ƒ,等效塑性应变的增加使材料开始损伤,材料的损伤又导致材料凝聚强度的逐渐丧失;点ƒ处到达最大强度值,材料持续发生塑性变形,损伤也持续累积直至负载到达点④;从④到⑤为弹性卸载;到达⑤时再一次出现屈服面,混凝土材料进一步塑性变形直到负载达到⑥。

      值得注意的是在点④和点⑤之间的弹性卸载响应,因为材料的破坏,从④到⑤之间的弹性卸载路径与到‚的弹性加载路径是不同的图 6 模型运用范例质量/热参数 密度 (Kg/m3) 比热 (J/Kg.K)2440654强度常量 A B N C Fc’ (GPa) SMAX 剪切模量 (GPa)0.791.600.610.0070.0487.014.86损伤常量 D1 D2 EFMIN0.041.00.01应力常量 Pc (GPa) μc K1 (GPa) K2 (GPa) K3 (GPa) Pl (GPa) μl T (GPa)0.0160.00185-1712080.800.100.004表1 f’c=0.048GPa(7000psi)混凝土参数汇总侵彻计算和数据比对 用Hanchak[3]等人进行的侵彻试验计算来演示和检验本模型。

      图7中描述了以400m/s的冲击速度。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.