第二章一元一次不等式和一元一次不等式组专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的不等式组有解,则a的取值不可能是( )A.0 B.1 C.2 D.32、若m>n,则下列不等式不成立的是( )A.m+4>n+4 B.﹣4m<﹣4n C. D.m﹣480 D.5x﹣2(20﹣x)<806、一次函数y=kx+b的图象如图所示,则下列说法错误的是( )A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0D.图象向下平移2个单位得y=﹣x的图象7、若成立,则下列不等式成立的是( )A. B.C. D.8、如果不等式组的解集是,那么a的值可能是( )A. B.0 C.﹣0.7 D.19、如图,数轴上表示的解集是( )A.﹣3<x≤2 B.﹣3≤x<2 C.x>﹣3 D.x≤210、不等式的最大整数解为( )A.2 B.3 C.4 D.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围为_____________.2、根据“3x与5的和是负数”可列出不等式 _________.3、不等式4x﹣3≤2x+1的非负整数解的和是 _____.4、不等式的解集为______.5、若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是 ______.三、解答题(5小题,每小题10分,共计50分)1、倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买型号和型号垃圾分拣机器人共台,其中型号机器人不少于型号机器人的倍设该垃圾处理厂购买台型号机器人.(1)该垃圾处理厂最多购买几台型号机器人?(2)机器人公司报价型号机器人万元台,型号机器人万元台,要使总费用不超过万元,则共有哪几种购买方案?2、阅读下列材料:根据绝对值的定义,表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4,8(A、B两点的距离用AB表示),点M是数轴上一个动点,表示数m.(1)AB= 个单位长度;(2)若=20,求m的值;(写过程)(3)若关于的方程无解,则a的取值范围是 .3、用不等式表示:(1)a与2的和是正数.(2)x与y的差小于3.(3)x,y两数和的平方不小于4.(4)x的一半与y的2倍的和是非负数.4、解不等式组:,并把解集表示在数轴上.5、已知一次函数.(1)画出函数图象.(2)不等式>0的解集是_______;不等式<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.-参考答案-一、单选题1、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a的取值范围,然后根据a的取值范围解答即可.【详解】解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选D.【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.2、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴,故该选项正确,不符合题意;C.∵m>n,∴,故该选项正确,不符合题意;D.∵m>n,∴,故该选项错误,符合题意;故选:D.【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.3、B【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.4、A【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解.【详解】解:由关于x的不等式组解得∵关于x的不等式组有且只有3个奇数解∴,解得关于y的方程3y+6a=22-y,解得∵关于y的方程3y+6a=22-y的解为非负整数∴,且为整数解得且为整数又∵,且为整数∴符合条件的有、、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.5、C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.6、B【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.7、C【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;故选:C.【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.8、C【分析】根据不等式组解集的确定方法:大大取大可得,再在选项中找出符合条件的数即可.【详解】解:∵不等式组的解集是,∴a≤,而,故选:C.【点睛】本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.9、A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.10、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】解:,,,则符合条件的最大整数为:,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.二、填空题1、1<m<2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m>1,由第二幅图得m<2,故1<m<2;故答案是:1<m<2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.2、【分析】3x与5的和为,和是负数即和小于0,列出不等式即可得出答案.【详解】3x与5的和是负数表示为.故答案为:.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.3、3【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【详解】解:4x﹣3≤2x+1移项,得:4x﹣2x≤1+3,合并同类项,得:2x≤4,系数化为1,得:x≤2,∴不等式的非负整数解为0、1、2,∴不等式的非负整数解的和为0+1+2=3,故答案为:3.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.4、x>-8【分析】按照去分母、去括号、移项、合并同类项的步骤求出不等式的解集.【详解】解:,去分母,得6+x>-2,移项,得x>-2-6,合并同类项,得x>-8.故答案为:x>-8.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.5、a>6【分析】根据不等式的基本性质,发现不等式的两边都乘(6﹣a)后,不等号的方向改变了,说明(6﹣a)是负数,从而得出答案.【详解】解:根据题意得:6﹣a<0,∴a>6,故答案为:a>6.【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不。