
(最新最全)北师大版三年级数学(下册)知识点整理汇总.doc
8页北师大三年级下册知识点汇总第一单元除数是一位数的除法1、只要是平均分就用<除法>计算▲余数一定要比除数〔小▲商不变的性质:被除数和除数同时乘或除以一个相同的数〔0除外,商不变2、除数是一位数的竖式除法法则:〔1从被除数的最高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数〔2除到被除数的哪一位,就把商写在那一位上〔3每求出一位商,余下的数必须比除数小顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小3、被除数末尾有几个0,商的末尾不一定就有几个0〔如:30÷5 = 64、笔算除法:〔1余数一定要比除数小在有余数的除法中:最小的余数是1;最大的余数是除数减去1;最小的除数是余数加1;最大的被除数=商×除数+最大的余数; 最小的被除数=商×除数+1;〔2除法验算:→ 用乘法没有余数的除法 有余数的除法被除数÷除数=商 被除数÷除数=商……余数商×除数=被除数 商×除数+余数=被除数被除数÷商=除数 〔被除数-余数÷商=除数0除以任何不是0的数〔0不能为除数都等于0;0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。
5、笔算除法顺序:确定商的位数,试商,检查,验算6、笔算除法时,哪一位上不够商1,就添0占位〔最高位不够除,就向后退一位再商7、多位数除以一位数〔判断商是几位数:用被除数最高位上的数跟除数进行比较,当被除数最高位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数最高位上的数小于除数时,商的位数就是被除数的位数减去1第二单元 图形的运动1.轴对称把一个图形沿着一条直线对折后,折痕两侧的图形能够完全重合,这个图形就叫做轴对称图形,折痕所在的直线叫做对称轴常见的轴对称图形有:正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形字母是轴对称图形的有:A、B、C、D、E、H、I、 K、M、O、T、V、U、W、X、Y长方形有2条对称轴,正方形有4条对称轴,圆有无数条对称轴,等边三角形有3条对称轴,等腰三角形有1条对称轴,等腰梯形有1条对称轴;平行四边形不是轴对称图形①特点:轴对称图形的大小不变,但方向相反;两个对称点到对称轴的距离相等②画法:定点数格—找对称点—描图③平移方法:注意:点和点对应,边和边对应1.平移是整体移动2.要知道平移了几格,只需找到一个顶点,数出这个点平移的格子数,就是整个图形平移的格数。
<也可以将每一个点平移了再依次连起来3.画出平移后,必须找到所有顶点平移后各点的位置,再按顺序连起来④左右对称图形距离对称轴近的另一边也近,距离远的另一边也远⑤有的轴对称图形不止一条对称轴⑥镜子中的数学:左右对称图形左右正好相反,上下对称图形,上下正好相反发现镜子中的人和照镜子的人左右方向正好相反时钟在镜子中的对称,以12和6为对称轴左右对称,即11点在镜子中是1点,只有12点和6点不变2.平移物体〔或图形沿着直线运动的现象叫做平移生活中常见的平移现象:拨算盘、升国旗、光盘的出入仓、拉开抽屉、火车、电梯和缆车的运动 方向〔上、下、左、右①两要 距离②特点:平移前后图形的形状、大小、方向不变,只是位置发生改变③画法:定点数格—找对应点—描图一是找出图形的一个端点;二是根据平移的方向和距离画出这个端点的对应点;三是根据图形的形状画出平移后的图形3.旋转物体〔或图形绕着一个点或一个轴做圆弧或圆周运动的现象叫做旋转生活中常见的旋转现象:拧水龙头、汽车方向盘的转动、风车的转动、翻书、风扇叶片、螺旋桨和钟摆的运动 特点:旋转前后图形的形状、大小不变,但是位置和方向发生改变。
4.设计图案一个简单的图形运用轴对称、平移或旋转的方法,可以设计出一幅美丽的图案第三单元 两位数乘两位数1、两位数乘两位数,积可能是〔三位数,也可能是〔四位数2、口算乘法:整十、整百的数相乘,只需把0前面数字相乘,再看两个乘数一共有几个0,就在结果后面添上几个0如:30×500=15000 可以这样想,3×5=15,两个因数末尾一共有3个0,在所得结果15后面添上3个0就得到30×500=150003、估算:18×22,可以先把因数看成整十、整百的数,再去计算→〔可以把一个乘数看成近似数,也可以把两个乘数都同时看成近似数如:22×18≈400 或 22×18≈360 或 22×18≈440 20 20 20 204、有大约字样的一般要估算5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题→别忘了比较这一步6、两位数乘两位数笔算乘法时,首先要相同数位对齐,用下面因数的个位数和十位数依次去乘上面因数的个位数和十位数,将所得的积相加〔遇到进位乘法时,那一位上的乘积满几十就向前一位进几①先用第二个因数的个位去乘第一个因数,〔表示"多少个一"得数末尾与第一个因数的个位对齐。
②再用第二个因数的十位去乘第一个因数,〔表示"多少个十"得数末尾与第一个因数的十位对齐③然后把两次乘得的积加起来7、 相关公式:乘数×乘数=积 积÷乘数=另一个乘数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算8、几个特殊数的乘法<牢记>:25×4=100 , 125×8=10009、一个乘数不变,另一个乘数扩大几倍,积也扩大几倍;除数不变,当被除数扩大几倍,商也扩大几倍第四单元 克、千克、吨1、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 1吨=1000千克 1千克=1000克2、千克:称一般物品的质量或称比较重的物品的质量用千克作单位用kg表示克:称比较轻的物品的质量用克作单位用g表示它们的进率是1000,即1千克=1000克 1kg=1000g克和千克之间的换算方法:把千克换算成克,就是在克数末尾添上3个0;把克换算成千克,就是在克数末尾去掉3个03、称很重的或大宗的物品表示大型物体的质量或载质量通常用吨作单位。
吨可以用字母"t"表示吨和千克之间的进率是1000,即1吨=1000千克 1t=1000 kg把吨换算成千克,就在数字的末尾加上3个0;把千克换算成吨,就在数字的末尾去掉3个0第五单元 面积〔一面积和周长的概念和公式:1、物体的表面或封闭图形的大小,就是它们的面积封闭图形一周的长度叫周长长度单位和面积单位的单位不同,无法比较周长一条线,面积一大片,周长在四周,面积在里面周长求长短,面积求大小2、比较两个图形面积的大小,要用统一的面积单位来测量3、面积单位的换算:①测量或计算长度时要用到长度单位相邻两个长度单位之间的进率是10 常用的长度单位有米m、分米dm、厘米cm1米=10分米 1分米=10厘米 1米=100厘米 1千米=1000米1厘米=10毫米②测量或计算面积时要用到面积单位相邻两个面积单位之间的进率是100常用的面积单位有平方厘米cm2、平方分米dm2、平方米m21平方米=100平方分米 1平方分米=100平方厘米 数的末尾加2个0数的末尾加2个0数的末尾减2个0数的末尾减2个0平方米 平方分米 平方厘米1平方米 = 10000平方厘米 1m2 = 10000cm2把平方米换算成平方厘米,就在数字的末尾加上4个0; <大单位换算成小单位>把平方厘米换算成平方米,就在数字的末尾去掉4个0。
<小单位换算成大单位>③边长为1厘米的正方形面积是1平方厘米〔1cm2④边长为1分米〔10厘米的正方形面积是1平方分米〔1dm2⑤边长为1米〔10分米的正方形面积是1平方米〔1m24、长方形:长方形的面积=长×宽〔S长=a×b 长方形的周长=〔长+宽×2求长:长=长方形面积÷宽已知周长求长:长=长方形周长÷2-宽求宽:宽=长方形面积÷长已知周长求宽:宽=长方形周长÷2-长正方形:正方形的面积=边长×边长〔 S正=a×a正方形的周长=边长×4求边长:边长=正方形面积÷边长已知周长求边长:边长=正方形周长÷45、 ①周长相等的两个长方形,面积不一定相等②周长相等的长方形和正方形,正方形面积最大〔周长相等时,长与宽越接近面积越大③面积相等的两个长方形,周长也不一定相等④面积相等时,长与宽越接近周长越小⑤<1>当周长一定时,长方形的长与宽越接近面积越大<2>当面积一定时,长方形的长与宽越接近周长越小6、在生活中找出接近于1平方厘米、1平方分米、1平方米的例子例如1平方厘米〔指甲盖、1平方分米〔手掌面的大小、电脑A盘或电线插座、1平方米〔教室侧面的小展板、可以站12个小学生的地方〔二长方形、正方形的面积计算1、归类:什么样的问题是求周长?〔缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等什么样的问题是求面积?或与面积有关?〔课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地砖、裁手帕等等2、长方形或正方形纸的剪或拼。
有两个或两个以上长方形或正方形拼成新的图形后的面积与周长从一个图形中〔通常是长方形剪掉一个图形〔最大的正方形等求剪掉部分的面积或周长、求剩下部分的面积或周长要求先画图,再标上所用数据,最后列式计算3、刷墙的〔有的中间有黑板、窗户等:求要用到的面积等于大面积减去小面积4、测量房间、菜园、教室、操场的面积通常用平方米为单位5、周长相等的长方形,长和宽越来越近,面积越来越大; 当长=宽时,即为正方形,面积最大6、正方形的边长扩大A倍,周长也扩大A倍,面积扩大〔A×A倍7、求数量时,先求大图形的面积,再求小图形的面积,最后用大图形的面积÷小图形的面积=数量8、已知正方形的周长,求面积利用公式先算边长,再算面积第六单元 分数的初步认识1、分数表示整体与部分之间的关系像、、…都是分数表示一个整体被平均分成2份,取其中的一份读作:二分之一当一个整体平均分成4份,取其中2份,表示为2、一个物体可以看成一个整体,但多个物体放在一起,也可以看成一个整体3、分数的意义:把一个整体平均分成若干份,表示其中的几份就是这个整体的几分之几,所分的份数作分母,所占的份数作分子认识几分之一:把一个整体平均分成几份,每一份就是它的几分之一。
认识几分之几:把一个整体平均分成几份,取其中的几份,就是这个整体的几分之几把一个整体平均分得的份数越多,它的每一份所表示的数就越小4、比较大小的方法: 分子相同比分母,分母小的分数反而大,分母大的分数反而小分母相同比分子,分子大的分数就大,分子小的分数就小5、分数加、减法:①同分母分数〔分母小于10相加、减法的计算方法:分母不变,分子相加、减;。












