好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

广东广州市2024届高三下学期期初模拟考试数学试题试卷含附加题.doc

19页
  • 卖家[上传人]:城***
  • 文档编号:376602843
  • 上传时间:2024-01-09
  • 文档格式:DOC
  • 文档大小:1.89MB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 广东广州市2024届高三下学期期初模拟考试数学试题试卷含附加题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1. “”是“函数的图象关于直线对称”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.抛物线的准线方程是,则实数( )A. B. C. D.3.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )A. B. C. D.4.已知是边长为的正三角形,若,则A. B.C. D.5.若x,y满足约束条件则z=的取值范围为( )A.[] B.[,3] C.[,2] D.[,2]6.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )A. B. C. D.7.若实数满足不等式组则的最小值等于( )A. B. C. D.8.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是( )A. B.C. D.9.已知函数若对区间内的任意实数,都有,则实数的取值范围是( )A. B. C. D.10.已知向量,则是的( )A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件11.若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限12.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( )A.1010.1 B.10.1 C.lg10.1 D.10–10.1二、填空题:本题共4小题,每小题5分,共20分。

      13.点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为______.14.已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_______.15.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.16.已知向量,且,则___________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.18.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值19.(12分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小值为1,求的值.20.(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.21.(12分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上.22.(10分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1.A【解题分析】先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【题目详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【题目点拨】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.2.C【解题分析】根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【题目详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【题目点拨】本题考查抛物线与准线的方程.属于基础题.3.B【解题分析】由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【题目详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B【题目点拨】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.4.A【解题分析】由可得,因为是边长为的正三角形,所以,故选A.5.D【解题分析】由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【题目详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【题目点拨】本题考查了非线性规划的应用,属于基础题.6.C【解题分析】由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【题目详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【题目点拨】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.7.A【解题分析】首先画出可行域,利用目标函数的几何意义求的最小值.【题目详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以.故选:A.【题目点拨】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.8.D【解题分析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.9.C【解题分析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得. 当a<1时,,所以函数f(x)在单调递减, 因为对区间内的任意实数,都有, 所以, 所以 故a≥1,与a<1矛盾,故a<1矛盾. 当1≤a

      13.1【解题分析】求出导函数,由切线斜率为4即导数为4求出切点横坐标,再由切线方程得纵坐标后可求得.【题目详解】设,由题意,∴,,,即,∴,.故答案为:1.【题目点拨】本题考查导数的几何意义,函数图象某点处的切线的斜率就是该点处导数值.本题属于基础题.14.【解题分析】根据三角形三边关系可知对任意的恒成立,将的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论,转化为的最小值与的最大值的不等式,进而求出的取值范围.【题目详解】因为对任意正实数,都存在以为三边长的三角形,故对任意的恒成立,,令,则,当,即时,该函数在上单调递减,则;当,即时,,当,即时,该函数在上单调递增,则,所以。

      点击阅读更多内容
      猜您喜欢
      广西省2024届学业水平考试数学试题试卷.doc 河北省衡中清大教育集团2024届高三第一次十校联考数学试题.doc 贵州省贵阳市清镇北大培文学校贵州校区2024届高三第二次质量检测试题数学试题.doc 湖南省湘潭市2024届高三第二学期联考数学试题.doc 天津市宝坻一中等七校2024届高三3月复习质量检测试题数学试题.doc 黑龙江省汤原高中2024届高三第一次诊断考试(数学试题文)试卷.doc 河北张家口市2024届高三第二学期学习能力诊断数学试题.doc 广东大埔华侨二中2024届高三下学期模拟考试数学试题.doc 山东省淄博第五中学2024届高三下学期第四次统练数学试题试卷.doc 蚌埠市重点中学2024届高三下学期数学试题统练(5)试题.doc 江苏省赣榆智贤中学2024届高中毕业班第一次诊断性检测试题数学试题.doc 2024年度内蒙古自治区统计师之中级统计师工作实务基础试题库和答案要点.docx 辽宁省本溪市第二中学2024届高三年级1月调研测试数学试题试卷.doc 山东省济宁市第一中学2024届高三零诊综合试题.doc 辽宁省本溪市2024届高三年级第二次质量检测试题(数学试题)试卷.doc 江苏省苏州市立达中学2024届高三第二学期期末统测试题.doc 四川省宜宾市2024届高三期末考试数学试题.doc 贵阳市2024届第二学期高三开学考数学试题.doc 湖南省衡阳市2024届高考数学试题原创模拟卷(九).doc 河北省鹿泉第一中学2024届高三第三次教学质量质检数学试题.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.