
2021-2022学年度沪科版七年级数学下册第9章-分式定向测评试题(含答案解析).docx
17页沪科版七年级数学下册第9章 分式定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某工程队要修路20千米,原计划平均每天修x千米,实际平均每天多修了0.1千米,则完成任务提前了( )A.()天 B.()天 C.()天 D.()天2、若分式有意义,则的取值范围是( )A.任意实数 B. C. D.3、下列约分正确的是( )A. B. C. D.4、八年级学生去距学校15km的博物馆参观,一部分学生骑自行车先走,过了30min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车同学的速度为x千米/时,则所列方程时( )A. B.C. D.5、当x=﹣2时,下列分式没有意义的是( )A. B. C. D.6、关于x的方程有增根,则m的值是( )A.2 B.1 C.0 D.-17、分式方程的解是( )A. B. C. D.8、某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x名工人生产,由题意列方程,下列选项错误的是( )A.x+3x=60 B. C. D.x=3(60-x)9、下列分式是最简分式的( )A. B. C. D.10、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成,设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式方程的无解,则=______.2、当______ 时,分式的值为零3、已知,则分式的值为_____.4、不改变分式的值.将分式分子、分母中各项系数化为整数.则结果为______.5、城际铁路开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?设由北京到天津的平均速度是每小时x千米,则可列方程为__________.三、解答题(5小题,每小题10分,共计50分)1、解答(1)计算:①②(2)解方程:①②2、先化简,再求值:,其中x=2.3、解分式方程:(1);(2)4、计算:.5、先化简,再求值:,其中a=﹣3.-参考答案-一、单选题1、A【分析】工程提前的天数=原计划的天数﹣实际用的天数,把相关数值代入即可.【详解】解:原计划用的天数为,实际用的天数为, 故工程提前的天数为()天. 故选:A.【点睛】此题考查了列分式解决实际问题,正确理解题意是解题的关键.2、C【分析】根据分式有意义的条件列不等式求解.【详解】解:由题意可得:x-2≠0,解得:x≠2,故选:C.【点睛】本题考查了分式有意义的条件,理解分式有意义的条件(分母不能为零)是解题关键.3、D【分析】根据分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【详解】解:A、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,,故A错误;B、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,原式=,故B错误;C、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,不满足分式基本性质,故C错误;D、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,,故D正确;故选:D.【点睛】本题考查了分式的基本性质,分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.4、C【分析】设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据同时到达列出方程即可.【详解】解:设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据题意列方程得,,故选:C.【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换.5、A【分析】根据分式的分母为0时,分式无意义即可解答.【详解】解:A.分式没有意义时,x=-2,故A符合题意;B.分式没有意义时,x=2,故B不符合题意;C.分式没有意义时,x=0,故C不符合题意;D.分式没有意义时,x=0,故D不符合题意;故选:A.【点睛】本题考查了分式无意义的条件,熟练掌握分式的分母为0时,分式无意义是解题的关键.6、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x﹣1),得:m﹣1-x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选A.【点睛】考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7、D【分析】两边都乘以2(3x-1),化为整式方程求解,然后检验即可.【详解】解:,两边都乘以2(3x-1),得3(3x-1)-2=7,∴9x-3-2=7,∴9x=12,∴,检验:当时,2(3x-1) ≠0,∴是原分式方程的解,故选D.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.8、A【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x) ①故D正确;将①两边同时除以3得:60-x=x,则B正确;将①两边同时除以3x得:=,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误.综上,只有A不正确.故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.9、C【分析】若分式的分子分母有公因式,则不是最简分式,否则是最简分式.【详解】选项A、B、D中的分式分子分母分别有公因式a、a、a-b,故它们都不是最简分式,只有选项C中的分式是最简分式;故选:C【点睛】本题考查了约分、最简分式的识别,掌握最简分式的意义是关键.10、D【分析】根据甲队半个月完成的任务量+乙队半个月完成的任务量=两队共同工作了半个月完成的工程量列式求解即可.【详解】解:由题意得,两队共同工作了半个月完成的工程量=×+×=,故选D.【点睛】本题考查了分式方程的应用,明确工作量=工作效率×工作时间是解答本题的关键.二、填空题1、或【分析】去分母,把分式方程化为整式方程,再分两种情况解答即可.【详解】解:去分母: 整理得: 分式方程的无解,所以当时,即 方程无解,则原方程无解,当时,是原方程的增根,此时 解得: 综上:原方程无解时,或 故答案为:或【点睛】本题考查的是分式方程无解的问题,掌握“分式方程无解包括两种情况:去分母后的整式方程无解与分式方程有增根”是解本题的关键.2、【分析】由分式的值为0的条件可得:,再解方程与不等式即可得到答案.【详解】解: 分式的值为零, 由①得: 由②得:且 综上: 故答案为:【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.3、##【分析】先把条件式化为再整体代入代数式求值即可.【详解】解: ,去分母得: 故答案为:【点睛】本题考查的是已知条件式求解分式的值,把条件式变形,再整体代入求值是解本题的关键.4、【分析】根据分式的基本性质,分子、分母同时乘10即可.【详解】解:将分式分子、分母中各项系数化为整数.则结果为,故答案为:.【点睛】本题考查了分式的基本性质,解题关键是熟练运用分式基本性质进行变形.5、【分析】设这次试车时,由北京去天津时平均每小时行驶x千米,则返回是每小时行驶(x+40)千米.预计高速列车在北京、天津间单程直达运行时间为半小时,则北京与天津之间的距离是(x+40)千米.然后根据试验列车由北京到天津的行驶时间比预计时间多用了6分钟即可列方程.【详解】解:设这次试车时,由北京去天津时平均每小时行驶x千米,则返回是每小时行驶(x+40)千米.预计高速列车在北京、天津间单程直达运行时间为半小时,则北京与天津之间的距离是(x+40)千米.根据题意,得.故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.三、解答题1、(1)①②(2)①②【分析】(1)①先算乘方,最后根据有理数加减运算法则即可求出值;②先算乘方和绝对值,再用乘法分配律进行计算,最后算加减;(2)①去括号、移项、合并同类项、系数化为1即可求解;②去分母、去括号、移项、合并同类项、系数化为1即可求解;(1)解:①原式;②原式.(2)解:① ;② .【点睛】本题考查了有理数的混合运算以及解一元一次方程,掌握有理数混合运算顺序和解一元一次方程的一般步骤是解题的关键.2、【分析】根据分式的加减法则“异分母分式相加减,先通分,变为同分母的分式,再加减”和分式的乘法法则“分式乘分式,用分子的积作为积的分子,分母作为积的分母”进行化简,再将代入即可得.【详解】解:原式=====当时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的加减法则和乘法法则.3、(1)(2)无解【分析】方程两边同时乘以公分母,进而转化为整式方程求解即可,注意分式方程要检验(1)解:两边同时乘以得:解得经检验是原方程的解;(2)即两边同时乘以得:解得当时,是原方程的增根原方程无解【点睛】本题考查了解分式方程,掌握分式的运算是解题的关键,注意分式方程要检验.4、1【分析】直接利用分式的加减运算法则计算即可.【详解。
