
北京农业大学附属中学2021-2022学年高二数学理模拟试卷含解析.docx
6页北京农业大学附属中学2021-2022学年高二数学理模拟试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的图象大致是 ( ) A. B. C. D.参考答案:C2. 已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.5 B.4 C.3 D.2参考答案:C【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.【解答】解:,故选C.【点评】等差数列的奇数项和和偶数项和的问题也可以这样解,让每一个偶数项减去前一奇数项,有几对得到几个公差,让偶数项和减去奇数项和的差除以公差的系数.3. 已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为;B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为b ;D.若∠F1PF2的外角平分线交x轴与M, 则参考答案:D略4. 复数(i是虚数单位)的共轭复数在复平面内对应的点是( )A.(2,﹣2) B.(2,2) C.(﹣2,﹣2) D.(﹣2,2)参考答案:B【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解: ==2﹣2i(i是虚数单位)的共轭复数2+2i在复平面内对应的点(2,2).故选:B.5. 若ABCD是正方形,E是CD的中点,且,,则= ( ) A. B. C. D.参考答案:B略6. “双曲线方程为x2﹣y2=3”是“双曲线离心率e=”的( )A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据双曲线的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:双曲线的标准方程为﹣=1,则a=b=,则双曲线为等轴双曲线,则双曲线离心率e=,即充分性成立,反之若双曲线离心率e=,则双曲线为等轴双曲线,但方程不一定为x2﹣y2=3,即必要性不成立,即“双曲线方程为x2﹣y2=3”是“双曲线离心率e=”的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合双曲线的性质是解决本题的关键. 7. 设等差数列的前项和为、是方程的两个根,. . . .参考答案:.、是方程的两个根,+=1,.故选.8. 函数的部分图象大致是( )A. B. C. D. 参考答案:C【分析】判断f(x)的奇偶性,及f(x)的函数值的符号即可得出答案.【详解】函数的定义域为,∵ ∴f(x)是奇函数,故f(x)的图象关于原点对称,当x>0时,,∴当0<x<1时,f(x)<0,当x>1时,f(x)>0,故选:C.【点睛】本题考查了函数的图象判断,一般从奇偶性、单调性、零点和函数值等方面判断,属于中档题.9. “a
参考答案:略12. 几何概率的两个特征:(1)________________________________________________________2)________________________________________________________参考答案:(1)每次试验的结果有无限多个,且全体结果可用一个有度量的区域来表示2)每次试验的各种结果是等可能的13. 已知则的最小值_____________参考答案:12略14. 设F1、F2分别是双曲线- =1(a>0,b>0)的左右焦点,若双曲线上存在点A,使∠F1AF2=900,且│AF1│=3│AF2│,则双曲线的离心率是 参考答案:略15. 在平面直角坐标系中,已知三角形顶点和,顶点在椭圆上,则 .参考答案: 由正弦定理和椭圆的定义可知16. 已知点P是抛物线上的点,设点P到抛物线准线的距离为,到圆上一动点Q的距离为的最小值是 参考答案:4略17. 已知函数,若,则实数a=_______参考答案:3【分析】由题得到关于a的方程,解方程即得实数a的值.【详解】因为,所以,所以,所以.因为a>0,所以a=3.故答案为:3【点睛】本题主要考查分段函数求值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 设函数f(x)=(x﹣1)ex﹣kx2(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当时,求函数f(x)在[0,k]上的最大值M.参考答案:【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)利用导数的运算法则即可得出f′(x),令f′(x)=0,即可得出实数根,通过列表即可得出其单调区间;(2)利用导数的运算法则求出f′(x),令f′(x)=0得出极值点,列出表格得出单调区间,比较区间端点与极值即可得到最大值.【解答】解:(1)当k=1时,f(x)=(x﹣1)ex﹣x2,f(x)=ex+(x﹣1)ex﹣2x=x(ex﹣2)令f(x)=0,解得x1=0,x2=ln2>0所以f(x),f(x)随x的变化情况如下表:x(﹣∞,0)0(0,ln2)ln2(ln2,+∞)f(x)+0﹣0+f(x)↗极大值↘极小值↗所以函数f(x)的单调增区间为(﹣∞,0)和(ln2,+∞),单调减区间为(0,ln2)(2)f(x)=(x﹣1)ex﹣kx2,x∈[0,k],.f(x)=xex﹣2kx=x(ex﹣2k),f(x)=0,解得x1=0,x2=ln(2k)令φ(k)=k﹣ln(2k),,所以φ(k)在上是减函数,∴φ(1)≤φ(k)<φ,∴1﹣ln2≤φ(k)<<k.即0<ln(2k)<k所以f(x),f(x)随x的变化情况如下表:x(0,ln(2k))ln(2k)(ln(2k),k)f(x)﹣0+f(x)↘极小值↗f(0)=﹣1,f(k)﹣f(0)=(k﹣1)ek﹣k3﹣f(0)=(k﹣1)ek﹣k3+1=(k﹣1)ek﹣(k3﹣1)=(k﹣1)ek﹣(k﹣1)(k2+k+1)=(k﹣1)[ek﹣(k2+k+1)]∵,∴k﹣1≤0.对任意的,y=ek的图象恒在y=k2+k+1下方,所以ek﹣(k2+k+1)≤0所以f(k)﹣f(0)≥0,即f(k)≥f(0)所以函数f(x)在[0,k]上的最大值M=f(k)=(k﹣1)ek﹣k3.19. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x3456y2.5344.5(1)请在给出的坐标系内画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归直线方程;(3)已知该厂技改前100吨甲产品的生产能耗为92吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数据:32.5+43+54+64.5=66.5)(参考公式:)参考答案:解: (1)如下图(2)=32.5+43+54+64.5=66.5==4.5==3.5=+++=86故线性回归方程为y=0.7x+0.35(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7100+0.35=70.35故耗能减少了90-70.35=19.65(吨)。
20. (本小题满分12分) 已知,(R).(1)求当时的最大值和最小值;(2)对,,使,求的取值范围. 参考答案:解:(1)因为在上递减,在上递增,所以,…………6分(2)记,在上的值域为.因为,所以,依题意得……………10分即,解得…………12分21. 在平面直角坐标系中,点与点关于原点对称,是动点,且直线与的斜率之积等于, 求动点的轨迹方程.参考答案:略22. 已知,是夹角为60的单位向量,且,1)求;(2)求与的夹角参考答案:(1)=(=-6++2=;(2),同理得,所以,又,所以=120。












