
2011年数学中考真题及答案.doc
9页一、填空题(每空5分,共20分)1、因式分解:a2b+2ab+b= .2、根据里氏震级的定义,地震所释放出的相对能量E与震级n的关系为:E=10n,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是 .3、如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,CE=1,DE=3,则⊙O的半径是 .4、定义运算ab=a(1-b),下面给出了关于这种运算的四个结论:①2(-2)=6 ②ab=ba③若a+b=0,则(aa)+(bb)=2ab ④若ab=0,则a=0.其中正确结论的序号是 (填上你认为所有正确结论的序号).二、选择题(每题4分,共20分)5、-2、0、2、-3这四个数中最大的是【 】A.2 B.0 C.-2 D.-36、我省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是【 】A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×1077、下图是五个相同的小正方体搭成的几何体,其左视图是【 】8、设a=-1,a在两个相邻整数之间,则这两个整数是【 】A.1和2 B.2和3 C.3和4 D.4和59、从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”,下列推断正确的是【 】A.事件M是不可能事件 B.事件M是必然事件C.事件M发生的概率为 D.事件M发生的概率为10、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是【 】A.7 B.9 C.10 D.1111、如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是【 】A. B. C. D.12、一元二次方程x(x-2)=2-x的根是【 】A.-1 B.2 C.1和2 D.-1和213、如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为【 】A.1 B.2 C.3 D.414、如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是【 】三、作图题15、如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.四、简答题16、先化简,再求值:,其中x=-2.17、江南生态食品加工厂收购了一批质量为10000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg,求粗加工的这种山货的质量.18、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A4( , )、A8( , )、A12( , );(2)写出点A4n的坐标(n是正整数); (3)指出蚂蚁从点A100到点A101的移动方向.19、如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).20、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组6.92.491.7%16.7%乙组1.383.3%8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由.21、如图,函数y1=k1x+b的图象与函数y2=(x>0)的图象交于点A(2,1)、B,与y轴交于点C(0,3).(1)求函数y1的表达式和点B的坐标;(2)观察图象,比较当x>0时y1与y2的大小.22、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C.(1)如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形; (2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1∶S2=1∶3; (3)如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.当= °时,EP的长度最大,最大值为 .评卷人得分五、综合题(每空? 分,共? 分)23、如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证:h1=h2;(2)设正方形ABCD的面积为S,求证:S=(h1+h2)2+h12; (3)若h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h1的变化情况.参考答案一、填空题1、; 2、100; 3、 4、①③.二、选择题5、A 6、C 7、A 8、C 9、B 10、 D 11、B 12、D 13、B 14、C三、作图题15、 如下图 四、简答题16、 原式=.17、设粗加工的该种山货质量为xkg,根据题意,得 x+(3x+2000)=10000. 解得 x=2000. 答:粗加工的该种山货质量为2000kg.18、⑴A1(0,1) A3(1,0) A12(6,0) ⑵An(2n,0)⑶向上19、 简答:∵OA, OB=OC=1500, ∴AB=(m). 答:隧道AB的长约为635m.20、(1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。
21、 (1)由题意,得 解得 ∴ 又A点在函数上,所以 ,解得 所以解方程组 得 所以点B的坐标为(1, 2)(2)当0<x<1或x>2时,y1<y2;当1<x<2时,y1>y2; 当x=1或x=2时,y1=y2.22、(1)易求得, , 因此得证.(2)易证得∽,且相似比为,得证.(3)120°, 五、综合题23、(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,证△ABE≌△CDG即可.(2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为h1、h1+h2,四边形EFGH是边长为h2的正方形,所以.(3)由题意,得 所以又 解得0<h1<∴当0<h1<时,S随h1的增大而减小; 当h1=时,S取得最小值;当<h1<时,S随h1的增大而增大.。












