
2015离心式通风机设计和选型手册.doc
42页离心式通风机设计通风机的设计包括气动设计计算,结构设计和强度计算等内容这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法相似设计方法简单,可靠,在工业上广泛使用而理论设讲方法用于设计新系列的通风机本章主要叙述离心通风机气动设计的一般方法离心通风机在设计中根据给定的条件:容积流量,通风机全压心戸,工作介质及其密度P,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比°1丿°2,转速n,进出口宽度®和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能对于通风机设计的要求是:(1)满足所需流量和压力的工况点应在最高效率点附近;(2)最高效率要高,效率曲线平坦;(3)压力曲线的稳定工作区间要宽;(4)结构简单,工艺性能好;(5)足够的强度,刚度,工作安全可靠;(6)噪音低;(7)调节性能好;(8)尺寸尽量小,重量经;(9)维护方便对于无因次数的选择应注意以下几点:(1)为保证最高的效率,应选择一个适当的厅值来设计2)选择最大的胃值和低的圆周速度,以保证最低的噪音3)选择最大的值,以保证最小的磨损4)大时选择最大的卩值§1叶轮尺寸的决定图3-1叶轮的主要参数:图3-1为叶轮的主要参数::叶轮外径巩:叶轮进口直径;:叶片进口直径;鸟:出口宽度;如:进口宽度;炖卫:叶片出口安装角;戸“:叶片进口安装角;Z:叶片数;:叶片前盘倾斜角;最佳进口宽度"1在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。
一般采用s=叶轮进口面积为吗®,而进风口面积为41,令为叶轮进口速度的变化系数,故有:由此得出:(3-1a)考虑到轮毂直径%引起面积减少,则有:(3-1b)其中u=dJD1在加速20%时,即=1'2,坯=DJ4.E(3-1c)图3-2加速20%的叶轮图图3-2是这种加速20%的叶轮图近年来的研究加速不一定是必需的,在某些情况下减速反而有利最佳进口直径由水力学计算可以知道,叶道中的损失与速度讪1的平方成正比,即选择在一定的流量和转速条件下合适的,以使讪1为最小首先讨论叶片厚度的影响如图3-3,由于叶片有一定厚度声;以及折边△的存在,这样使进入风机的流速从增加至,即:图3-3叶片厚度和进出口的阻塞系数计算用S和分别表示进出口的阻塞系数:(3-2a)式中fl为节距,厅为切向叶片厚度那么进出口的径向速度为:当气流进入叶轮为径向流动时,凡=亡\,那么:(3-2b)为了使最小,也就是粋损失最小,应选用适当的^1当过大时,G純过小,但円加大很多,使(3-2C)式右边第二项过大,加大当D1过小时,(3-2c)式右第2乩Q二项小,第一项会过大,总之在中间值时,使叫最小,即比3考虑到进口20%加速系数,及轮毂的影响,®的表达式为(3-1b)式,代入(3-2C)式为:(3-3c)对式(3-3)求极小值,得出的优化值为:(3-4a)出口直径°:不用上述类似的优化方法,只要选用合适卩的即可:(3-4b)即:(3-6讥1-巳肉/Vi4c)也可以根据,求出卩(3-4d)三.进口叶片角1.径向进口时的产"优化值同°1一样,根据眄为最小值时,优化计算进口叶片角。
当气流为径向进口时^=90\且G相均布,那么从进口速度三角形(令进口无冲击几二)代入值后得出值,最后得出:(3-5)叽Q求极值,即(3-6a)这就是只考虑径向进口时的产“优化值把(3-6a)式代入(3-4a)至(3-4d)式:(3-6b)进而当卩二0码二12巧二1.0时:(3-6c)或者:1.702£i丿(3-6d)2.当叶轮进口转弯处气流分布不均匀时卅“的优化值图3-4,叶片进口处速度分布不均匀,在前盘处速度大小为和讪血,比该面上的平均值要大,设耳=凰1+龟彷皿卜喰1+戸堪运卫)此外:(3-7a)2二1〔1+2「亦)进而采用近似公式:上弓其中广1为叶轮前盘叶片进口处的曲率半径计算出来的兀1角比站卫孑小一些如下表所示:S他:0.20.41.02.03.04.0'低:0.9520.880.740.580.4720.424礼:押那么(3-7b)式中0"为产"的平均值图3-4叶片进口处和分布不均匀图3-5进口速度三角3.当气流进入叶片时有预旋,即由图3-5进口速度三角形可以得出:W1900tl(1-v2)助见(%聊空+弘旳尸求极值后:(2-8a可以看出当气流偏向叶轮旋转方向时(正预旋将增大,同时得到:4.叶轮的型式不同时产"有所区别一般推荐叶片进口角稍有一个较小的冲角。
后向叶轮中叶道的摩擦等损失较小,此时朋“的选择使叶轮进口冲击损失为最小冲角心〜叫一般后向叶轮:弘"~幻对于前向叶轮,由于叶道内的分离损失较大,过小的进口安装角导片弯曲度过大,分离损失增加较大的安装角虽然使进口冲击损失加大,但是流道内的损失降低,两者比较,效率反而增高一般前向叶轮:兀"0-刖>155-160"时甚至四.叶轮前后盘的圆角和叶片进口边斜切设计中,在可能情况下尽量加大叶轮前后盘的圆角半径r和R(图3-1)叶片进口边斜切是指前盘处叶片进口直径大于后盘处的直径,以适应转弯处气流不均匀现象如果叶片进口与轴平行,如图3-6(a)所示,用"在进口边各点是相同的但该处气流速度不均匀,而周速旳相同故气流角©I不同,这样就无法使叶片前缘各点的气流毫无冲击地进入叶轮为此将叶片进口边斜切(见图3-6(b)),靠近前盘处的口相大,且其旳亦大,而靠近后盘G相小,且亦小使气流良好地进入叶道前向叶轮,进口气流角网是根据叶片弯曲程度来考虑的,故不做成斜切图3-6叶轮前后盘的圆角和叶片进口边斜切五.叶片数z的选择叶片数太少,一般流道扩散角过大,容易引起气流边界层分离,效率降低叶片增加,能减少出口气流偏斜程度,提高压力。
但过多的叶片会增加沿程摩阻损失和叶道进口的阻塞,也会使效率下降根据试验,叶片间流道长度丨为流道出口宽度a的2倍,且丨为,由几何关系:Hl—和弓[TiAh(3-9)出口角大的叶轮,其叶道长度较短就容易引起当量扩张角过大,应采用较多叶片出口角小时,叶道较长,应采用较少叶片同时°1/°2较小时,Z也少一些为好,以免进口叶片过于稠密对于后向叶轮:当Z=8~12个时,采用机翼型及弧型叶片,当Z=12~16时,应采用直线型叶片对于前向叶轮,Z=12~16.六.叶片进出口宽度乩对1.后向叶轮一般采用锥形圆弧型前盘,对于一定流量叶轮,^过小则出口速度过大,叶轮后的损失增大,而禺过大,扩压过大,导致边界层分离,所以的大小要慎重决定由于(3-10a)上式表明,在一定的旳时,值与卩成正比,对于一定的叶轮过大,出口速度大,叶轮后损失增大,反之处过小,扩压度过大试验证明,不同的炖卫,值不同,即0心(3-10b)然后,利用(3-10a)式可计算出^2后向叶轮的进口处宽度,一般可近似计算(3-10c)2.前向叶轮进口处参数影响很大其叶片入口处宽度®应比也頁公式计算出的大一些例如当鳴二4—11.7(2565)0.25-0.35歼二(1.2~1二)牛^^0.35-0.5歼二(1八20)牛前向叶轮采用平直前盘时:,若采用锥形前盘,必须正确选用前盘倾斜角,即0.3~0.40.45~0.5>0.5<20tf<25"根据召值及®,可决定图3-7前盘形状叶片形状的确定离心式通风机主要参数601/卽久场血及Z已知后,就可以绘制叶片的形状,叶片的形状有很多选择。
一.平直叶片平直叶片是最简单的叶片型式,根据图3-8,由正弦定理:(3-11)上式表明,和之间满足(3-11)式,不能同时任意选择例如:尸2:0.30.50.7(当弘亠时)炖:刊少64.3"/图3-8平直叶片圆弧型叶片圆弧型叶片分单圆弧和多圆弧,一般多采用单圆弧在设计中,一般先求出等,根据已知条件确定叶片圆弧半径览的大小,和该圆弧的中心位置P,以及圆弧所在半径禺图3-9a后向圆弧叶片图3-9b前向圆弧叶片图3-9c径向叶片1.后向叶片圆弧如图3-9a所示,已知乂巾2野—^.P20—九4NW]2w2—AP\0—0空在AP20和中,P0为公共边:面二兔P2=P\=Rk01=h,Q2=q由余弦公式:F03=F23+022-2巨亦9如尿—丘;+扌-2尺込Cx02丄,卫;—用+彳-2卫&严]C*处0口F_F&电Cosff2A-时哪J兔二J用十F_曲也口^0沏二J应;十扌—2時(3-12b)叶片长度丨:2.前向叶轮圆弧叶片2[昭咳1新-血)-存以让『-如)](3-13a)兔二J用十刁-巩叨加1ET-必力3.径向叶片见图3-9C(3-13b)(3-14a)(3-14b)三.叶片流道的决定对于直叶片和圆弧叶片,其进口不能很准确地成型,所以在某些情况下会产生过高的前缘叶片压力,从而导致了气流的分离。
最好在进口有一段无功叶片,或用近似的圆弧表示这种无功近似圆弧如图3-10所示:从1点引出的无功圆弧的半径r等于从该点引出的对数曲线的曲率半径图解时,连接01两点,做角Z°1j4=^,过0点做°】的垂线,交于角的另一边为A点,以百二厂为半径做圆弧,弧血段为无功叶片,e点的以后用抛物线,或者曲线板延长,而且保证出口角为0空即可流道画出以后,检查过流断面,过流断面变化曲线的斜率不能大于呼,否则的话,扩散度过在,造成较大的边界层损失,甚至分离一般叶片较少时,用圆弧叶片还是合理的图3-10无功叶片及过流断面检查丿么右一走功叶片戲农曲車舟悴之邑稱图3-11无功叶片的形状以下用解析法做几种情况的无功叶片:无功叶片就是环量不变的叶片,即'渥保持常数(或保持常数)的叶片,用下标”0”表示进口,则:(3-15)上式为无功叶片的方程.(1)q二比血情况,这时前盘为双曲线,即rdtprtD-C^/r(3-16a)积分后:@-—(T-广J十旦-—)(3-16b)如果进口无预旋:^=°(3-16c)(3-16d)(3-17a)。












