
2021年湖南省怀化市中考数学模拟试卷(五).doc
24页2021年湖南省怀化市中考数学模拟试卷(五)一、选择题(每小题4分,共40分)1.(4分)下列实数是无理数的是( )A. B.1 C.0 D.﹣52.(4分)下列图形是中心对称图形的是( )A. B. C. D.3.(4分)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为( )A.88.9×103 B.88.9×104 C.8.89×105 D.8.89×1064.(4分)下列运算正确的是( )A.2x2+x2=2x4 B.x3x2=2x3 C.(x2)3=x2 D.2x7÷x5=2x25.(4分)以下调查中,最适合采用全面调查的是( )A.检测长征运载火箭的零部件质量情况 B.了解全国中小学生课外阅读情况 C.调查某批次汽车的抗撞击能力 D.检测某城市的空气质量6.(4分)一元二次方程x2﹣2x+1=0的根的情况是( )A.有两个不等的实数根 B.有两个相等的实数根 C.无实数根 D.无法确定7.(4分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为( )A.60° B.65° C.70° D.75°8.(4分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为( )A.15 B.20 C.25 D.309.(4分)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为( )A.﹣= B.=﹣ C.﹣20= D.=﹣2010.(4分)如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2﹣OC2的值为( )A.5 B.3 C.4 D.2二、填空题(每小题4分,共24分)11.(4分)如图,数轴上所表示的x的取值范围为 .12.(4分)计算:﹣= .13.(4分)某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率(结果保留小数点后两位)0.750.830.780.790.800.80根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是 (结果保留小数点后一位).14.(4分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是 .15.(4分)在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为 .16.(4分)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为 .三、解答题(共86分)17.(8分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(8分)先化简,再求值:÷(2+),其中a=2.19.(10分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.20.(10分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?21.(12分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)m= ,n= ;(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是 ;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有 名.22.(12分)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.23.(12分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.24.(14分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.2021年湖南省怀化市中考数学模拟试卷(五)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)下列实数是无理数的是( )A. B.1 C.0 D.﹣5【解答】解:无理数是无限不循环小数,而1,0,﹣5是有理数,因此是无理数,故选:A.2.(4分)下列图形是中心对称图形的是( )A. B. C. D.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.3.(4分)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为( )A.88.9×103 B.88.9×104 C.8.89×105 D.8.89×106【解答】解:889000=8.89×105.故选:C.4.(4分)下列运算正确的是( )A.2x2+x2=2x4 B.x3x2=2x3 C.(x2)3=x2 D.2x7÷x5=2x2【解答】解:A、原式=3x2,不符合题意;B、原式=x5,不符合题意;C、原式=x6,不符合题意;D、原式=2x2,符合题意.故选:D.5.(4分)以下调查中,最适合采用全面调查的是( )A.检测长征运载火箭的零部件质量情况 B.了解全国中小学生课外阅读情况 C.调查某批次汽车的抗撞击能力 D.检测某城市的空气质量【解答】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.6.(4分)一元二次方程x2﹣2x+1=0的根的情况是( )A.有两个不等的实数根 B.有两个相等的实数根 C.无实数根 D.无法确定【解答】解:∵a=1,b=﹣2,c=1,∴△=(﹣2)2﹣4×1×1=4﹣4=0,∴有两个相等的实数根,故选:B.7.(4分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为( )A.60° B.65° C.70° D.75°【解答】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.8.(4分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为( )A.15 B.20 C.25 D.30【解答】解:设正方形EFGH的边长EF=EH=x,∵四边形EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.9.(4分)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为( )A.﹣= B.=﹣ C.﹣20= D.=﹣20【解答】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.10.(4分)如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2﹣OC2的值为( )A.5 B.3 C.4 D.2【解答】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐。












