好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新课标高二数学暑假作业八.doc

10页
  • 卖家[上传人]:M****1
  • 文档编号:388007917
  • 上传时间:2023-11-17
  • 文档格式:DOC
  • 文档大小:421.51KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 新课标)2015-2016高二数学暑假作业(八)2015-2016下学期高二数学暑假作业八本套试卷的知识点:集合与简易逻辑 基本初等函数 数列 三角函数 平面向量 不等式 空间几何体 圆锥曲线与方程 导数及其应用 概率 统计 第I卷(选择题)1.设集合,若Ф,则实数a的取值范围是( )A. B. C. D.2.复数 (i是虚数单位)等于( )A.4+3i B.4-3i C.-4+3i D.-4-3i3.口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X=2)=,则n的值为(  )A.5 B.6 C.7 D.84.在ABC中,,,AC=3,D在边BC上,且CD= 2DB,则AD=( ) A B. C.5 D.5.已知下列命题中:(1)若,且,则或,(2)若,则或(3)若不平行的两个非零向量,满足,则(4)若与平行,则其中真命题的个数是( )A. B. C. D.6.阅读下图左边的流程图,若输入,则输出的结果是( )A.2 B. 4 C.5 D. 6 7.设x,y∈R*且xy﹣(x+y)=1,则( )A.xy≤+1 B.x+y≥2(+1) C.xy≥2(+1) D.x+y≤(+1)28.在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E、交CC′于F,则以下结论中错误的是(  )A.四边形BFD′E一定是平行四边形B.四边形BFD′E有可能是正方形C.四边形BFD′E有可能是菱形D.四边形BFD′E在底面投影一定是正方形9.(2016新课标高考题)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,) (C)(0,3) (D)(0,)10.已知函数的导数为,则数列的前项和是( )A. B. C. D. 第II卷(非选择题)11.某几何体的三视图如图所示,则该几何体的体积为 12.在等比数列{an}中,若a1+a2+a3=8,a4+a5+a6=-4,则= ;13.(4分)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为 _________ .14.(4分)已知函数f(x)=,对任意的x∈[0,1]恒有f(x+a)≤f(x)成立,则实数a的取值范围是 _________ . 15.已知椭圆的焦点在x轴上,短轴长为4,离心率为.(1)求椭圆的标准方程;(2)若直线l过该椭圆的左焦点,交椭圆于M、N两点,且,求直线l的方程.16.在数列{an}中,a1=1,当n≥2时,满足an﹣an﹣1+2an•an﹣1=0.(Ⅰ)求证:数列{}是等差数列,并求数列{an}的通项公式;(Ⅱ)令bn=,数列{bn}的前n项和为Tn,求使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围.17.如图所示,正方体ABCD﹣A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1.【KS5U】2015-2016下学期高二数学暑假作业八试卷答案1.C2.D3.C4.A5.C6.A7.B【考点】基本不等式.【专题】计算题.【分析】先根据均值不等式可知xy≤,代入xy=1+x+y中,转化为关于x+y的一元二次不等式,进而求得x+y的最小值,同理求得xy的最小值,即可得到答案.【解答】解:∵x,y∈R+,∴xy≤(当且仅当x=y时成立).∵xy=1+x+y,∴1+x+y≤,解得x+y≥2+2或x+y≤2﹣2(舍),B符合题意,可排除D;同理,由xy=1+x+y,得xy﹣1=x+y≥2(当且仅当x=y时成立),解得≥1+或≤1﹣(舍),即xy≥3+2从而排除A,C.故选B.【点评】本题主要考查了基本不等式在最值问题中的应用.利用基本不等式和整体思想转化为一元二次不等式,再由一元二次不等式的解法进行求解,有较强的综合性.8.B【考点】空间几何体的直观图.【专题】对应思想;数形结合法;空间位置关系与距离.【分析】根据题意,画出图形,结合图形,对四个命题进行分析判断,即可得出结论.【解答】解:如图所示;对于A,四边形BFD′E中,对角线EF与BD′互相平行,得出四边形BFD′E是平行四边形,A正确;对于B,四边形BFD′E的对角线EF与BD′不能同时满足平行、垂直且相等,即四边形BFD′E不可能是正方形,B错误;对于C,当与两条棱上的交点都是中点时,四边形BFD′E为菱形,C正确;对于D,四边形BFD1E在底面ABCD内的投影是正方形ABCD,D正确.故选:B.【点评】本题考查了正方体中有关的线面位置关系的应用问题,解题时应想象出要画的四边形是什么,有哪些特征,是基础题目.9. 【答案】A【解析】由题意知:双曲线的焦点在轴上,所以,解得:,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.考点:双曲线的性质10.A11.【考点】由三视图求面积、体积. 【专题】空间位置关系与距离.【分析】几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积【解答】解:由三视图知:几何体是直三棱柱消去一个三棱锥,如图:直三棱柱的体积为×2×2×2=4.消去的三棱锥的体积为××2×1×2=,∴几何体的体积V=4﹣=.故答案为:【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.12.213.14.15.【考点】直线与圆锥曲线的关系;直线的一般式方程;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)由短轴长可得b值,由离心率为可得=,结合a2=b2+c2即可求得a值,即可得出椭圆的方程;(2)设直线方程为:y=k(x+1),联立方程组消掉y得到x的二次方程,设M(x1,y1),N(x2,y2),由韦达定理及弦长公式即可表示弦长|MN|,最后利用弦长建立等式,即可求出直线l的方程.【解答】解:(1),椭圆的标准方程:(2)由题意知,直线l的斜率存在,所以设直线方程为:y=k(x+1),,联立得:(5k2+4)x2+10k2x+5k2﹣20=0,∴,则:==,∵,∴即:即:,所以,k=±1,所以直线方程为:y=x+1或y=﹣x﹣1.【点评】本题考查直线与圆锥曲线的位置关系及椭圆方程的求解,弦长公式及韦达定理是解决该类题目的基础知识,要熟练掌握.16.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(I)当n≥2时,满足an﹣an﹣1+2an•an﹣1=0.可得=2,利用等差数列的通项公式即可得出.(II)bn===,利用“裂项求和”可得数列{bn}的前n项和Tn=.2Tn(2n+1)≤m(n2+3)化为2n≤m(n2+3),化为.再利用函数与数列的单调性即可得出.【解答】(I)证明:∵当n≥2时,满足an﹣an﹣1+2an•an﹣1=0.∴=2,∴数列{}是等差数列,首项为=1,公差d=2.∴=2n﹣1.(II)解:bn===,∴数列{bn}的前n项和为Tn=+…+==.∴2Tn(2n+1)≤m(n2+3)化为2n≤m(n2+3),化为.令f(n)==,函数g(x)=(x>0),g′(x)==,令g′(x)>0,解得,此时函数g(x)单调递增;令g′(x)<0,解得,此时函数g(x)单调递减.∴当x=时,函数g(x)取得最小值.∴当n=1,2时,f(n)单调递增;当n≥2时,f(n)单调递减.∴当n=2时,f(n)取得最大值,∴.【点评】本题考查了等差数列的通项公式、“裂项求和”、函数与数列的单调性,考查了恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.17.【考点】直线与平面平行的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】过P作PM∥AD交D1D于M,过Q作QN∥BC交CD于N.则四边形PMNQ是平行四边形,即PQ∥MN.【解答】证明:过P作PM∥AD交D1D于M,过Q作QN∥BC交CD于N,连接MN.∵AD∥BC,∴PM∥QN,∵AD1=BD,AP=BQ∴D1P=DQ,∴===,∵AD=BC,∴PM=QN.∴四边形PMNQ是平行四边形,∴PQ∥MN,⊂平面DCC1D1,∵PQ⊄平面DCC1D1,MN⊂平面DCC1D1,∴PQ∥平面DCC1D1.【点评】本题考查了空间线面平行的判定,构造平行线是解题的关键.- 10 - / 10。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.