好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

专升本高等数学(二)-112_真题(含答案与解析)-交互.pdf

9页
  • 卖家[上传人]:T****m
  • 文档编号:215593344
  • 上传时间:2021-11-26
  • 文档格式:PDF
  • 文档大小:288.52KB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专升本高等数学 (二)-112 ( 总分 150, 做题时间 90分钟) 考生注意: 根据国标要求,试卷中正切函数、余切函数、反正切函数和反余切函数分别用 tanx 、cotx 、arctanx 和 arccotx表示. 一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 当 x0时,下列 _为无穷小量Ae xBsinx CDSSS_SIMPLE_SINA B C D 该题您未回答 : 该问题分值 : 4答案:B 解析 由无穷小量的定义:若,则称 f(x) 为 x0时的无穷小量而只有=0,所以选 B2. 是函数 f(x) 在点 x=x 0处连续的SSS_SINGLE_SELA 必要条件B 充分条件C 充分必要条件D 既非充分又非必要条件该题您未回答 : 该问题分值 : 4答案:A 解析 函数 f(x) 在点 x=x 0处连续的充要条件是因此只是 f(x) 在点 x 0处连续的必要条件,选A3. 设 f(x)=2lnx+e x,则 f(2)= SSS_SINGLE_SELA e B 1 C 1+e2 D ln2 该题您未回答 : 该问题分值 : 4答案:C 解析 ,选 C4. 下列求极限问题中洛必达法则失效的是ABCDSSS_SIMPLE_SINA B C D 该题您未回答 : 该问题分值 : 4答案:B 解析 A 选项,B选项,极限不存在,洛必达法则失效,我们换用其他方法C选项,D选项,故选 B5. 设,则 x=1 为 f(x) 在-2 ,2 上的SSS_SINGLE_SELA 极小值点,但不是最小值点B 极小值点,也是最小值点C 极大值点,但不是最大值点D 极大值点,也是最大值点该题您未回答 : 该问题分值 : 4答案:B 解析 由 f(x)=x 2 -1 ,得驻点为 x=1,又因 f(x)=2x,则 f(1)=2 0所以 x=1 为极小值点又所以应选 B6. ln2xdx= A2xln2x-2x+C Bxlnx+lnx+C Cxln2x-x+C DSSS_SIMPLE_SINA B C D 该题您未回答 : 该问题分值 : 4答案:C 解析 分部积分法, ln2xdx=xln2x - xdlnx=xln2x - dx=xln2x -x+C,故选C7. A2f(2)-f(0) B2f(1)-f(0) CDSSS_SIMPLE_SINA B C D 该题您未回答 : 该问题分值 : 4答案:C 解析 由8. 函数的定义域是SSS_SINGLE_SELA (x ,y)|1 x2+y29B (x ,y)|1 x2+y29 C (x ,y)|1 x2+y29D (x ,y)|1 x2+y29 该题您未回答 : 该问题分值 : 4答案:C 解析 要使表达式有意义,自变量x,y 必须同时满足所以函数的定义域为: D=(x ,y)|1 x 2 +y 29,故选 C9. 设 z=xe xy,则SSS_SINGLE_SELA xyexy B exy C x2exy D (1+xy)exy 该题您未回答 : 该问题分值 : 4答案:D 解析 求时,应视函数关系中的y 为常数,于是,故选 D10. 任意三个随机事件A、B、C中至少有一个发生的事件可表示为SSS_SINGLE_SELA ABCB ABCC ABCD ABC该题您未回答 : 该问题分值 : 4答案:A 二、填空题1. =_SSS_FILL该题您未回答 : 该问题分值 : 4 解析 2. 函数的连续区间为 _SSS_FILL该题您未回答 : 该问题分值 : 40 ,1)(1,3 解析 分段函数 f(x) 在其每段内都是连续的,因此只需看分段点 x=1,x=2 处连续情况则 f(x) 在 x=1处不连续则 f(x) 在 x=2处连续综上, f(x) 的连续区间为 0 ,1)(1,3 3. 双曲线在点处的切线方程为 _,法线方程为 _SSS_FILL该题您未回答 : 该问题分值 : 4 解析 ,所以切线方程为,法线方程为4. 设 f(x)=e -x,则xf(x)dx=_ SSS_FILL该题您未回答 : 该问题分值 : 4xe -x +e -x +C 解析 分部积分法, xf(x)dx=xdf(x)=x f(x)-f(x)dx=x e -x - e -x dx=xe -x +e -x +C5. =_SSS_FILL该题您未回答 : 该问题分值 : 4 解析 由奇、偶函数对称区间求定积分性质得,6. 函数的定义域是 _SSS_FILL该题您未回答 : 该问题分值 : 4(x ,y)|y x 解析 因 1+x 2 +y 21,所以要使表达式有意义,自变量x、y 只需满足 y- x0,即 yx所以函数的定义域为: D=(x ,y)|y x 7. 设 z=2x 2 3xy-y 2,则=_SSS_FILL该题您未回答 : 该问题分值 : 43 解析 先求,于是8. 斜边长为 l 的直角三角形中,最大周长为_SSS_FILL该题您未回答 : 该问题分值 : 4 解析 该题也是条件极值问题用拉格朗日乘数法求解设直角三角形的两直角边长分别为x 和 y,周长为 z,且z=l+x+y(0 xl ,0yl) 条件函数为 l 2 =x 2 +y 2令 F(x ,y,)=l+x+y+ (x 2 +y 2 -l 2 ) 求解方程组根据实际意义,一定存在最大周长,所以时,即斜边长为 l 时的等腰直角三角形周长最大,且此周长为9. =_SSS_FILL该题您未回答 : 该问题分值 : 4yx y-1 dx+x y lnxdy 10. =_SSS_FILL该题您未回答 : 该问题分值 : 4三、解答题本大题共 8 个小题,共 70 分解答应写出推理、演算步骤1. 求SSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 8解2. 设 f(x)=(x-1)(x) ,且 (x) 在 x=1 处连续,证明: f(x) 在点 x=1 处可导SSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 8解 由,( 又因为 (x) 在 x=1处连续,所以) 所以 f(x)在 x=1 处可导3. 求曲线的水平渐近线和铅直渐近线SSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 8解 因,所以曲线有水平渐近线y=0又因为,所以曲线有铅直渐近线x=24. 计算e 2x cose x dx SSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 8解 解法 1:e 2x cose xdx=e x cose x d(e x)=e x d(sine x ) =e x sine x - sine x d(e x )=e x sine x +cose x +C解法 2:凑微分法与分部积分法结合起来求不定积分是常用方法之一,本题也可先作变量代换,然后再使用分部积分法,即令e x =t ,x=lnt ,于是e 2x cose xdx=tcostdt=tsint- sintdt =tsint+cost+C=e x sine x +cose x +C5. 设事件 A、B的概率分别为,如果,求的值;如果 A与 B互斥,求的值;如果,求的值SSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 8解 因,于是:(1) 当 A B时,(2) 当时,从而(3) 当时,则6. 设函数 f(x) 在0 ,a 连续,在 (0,a) 可导,且 f(0)=0 ,f(x)0,当 0t a时,把图中阴影部分的面积记为S(t) 求当 t 为何值时 S(t) 最小? SSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 10解 由图知,当 0t a时,S(x)=(2t-a)f(t)+2f(t)-f(t)-f(t)=(2t-a)f(t)故当时,S(t) 0;时,S(t)=0 ;当时,S(t) 0故 S(t) 在时取得最小值7. 求由曲线 y=x 2与 x=2,y=0 所围成图形分别绕 x 轴,y 轴旋转一周所生成的旋转体体积SSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 10解 如图,绕 x 轴旋转一周所得的旋转体体积为绕 y 轴旋转一周所得的旋转体体积为8. 求由曲线 y=e x,y=e -x及 x=1 所围成的平面图形的面积以及此平面图形绕x轴旋转一周所成的旋转体的体积V xSSS_TEXT_QUSTI该题您未回答 : 该问题分值 : 10解 其平面图形如图所示,则平面图形面积旋转体的体积为1。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.