
(完整版)2022年浙江专升本高等数学真题.docx
5页(完整版)2022年浙江专升本高等数学真题 2022年浙江专升本高数考试真题答案 一、选择题:本大题共5小题,每小题4分,共20分 1、设??? ??≤>=00,,sin )(x x x x x x f ,则)(x f 在)1,1(-内( C ) A 、有可去间断点 B 、连续点 C 、有跳跃间断点 D 、有第二间断点 解析:1sin lim )(lim ,0lim )(lim 0 ====+ +--→→→→x x x f x x f x x x x )(lim )(lim 0 x f x f x x +-→→≠Θ,但是又存在,0=∴x 是跳跃间断点 2、当0→x 时,x x x cos sin -是2 x 的( D )无穷小 A 、低阶 B 、等阶 C 、同阶 D 、高阶 解析:02 sin lim 2sin cos cos lim cos sin lim 0020==+-=-→→→x x x x x x x x x x x x x ?高阶无穷小 3、设)(x f 二阶可导,在0x x =处0)(0=00,,sin )(x x x x x x f ,则)(x f 在)1,1(-内( C ) A 、有可去间断点 B 、连续点 C 、有跳跃间断点 D 、有第二间断点 解析:1sin lim )(lim ,0lim )(lim 0 ====+ +--→→→→x x x f x x f x x x x )(lim )(lim 0 x f x f x x +-→→≠Θ,但是又存在,0=∴x 是跳跃间断点 2、当0→x 时,x x x cos sin -是2 x 的( D )无穷小 A 、低阶 B 、等阶 C 、同阶 D 、高阶 解析:02 sin lim 2sin cos cos lim cos sin lim 0020==+-=-→→→x x x x x x x x x x x x x ?高阶无穷小 3、设)(x f 二阶可导,在0x x =处0)(0<''x f ,0) (lim =-→x x x f x x ,则)(x f 在0x x =处( B ) A 、取得极小值 B 、取得极大值 C 、不是极值 D 、() )(0,0x f x 是拐点 解析:0 000)()(lim )(,0) (lim 00 x x x f x f x f x x x f x x x x --='∴=-→→Θ,则其0)(,0)(00=='x f x f , 0x 为驻点,又000)(x x x f =∴<''Θ是极大值点。
4、已知)(x f 在[]b a ,上连续,则下列说法不正确的是( B ) A 、已知 ? =b a dx x f 0)(2,则在[]b a ,上,0)(=x f B 、?-=x x x f x f dt t f dx d 2)()2()(,其中[]b a x x ,2,∈ C 、0)()(












