高中数学 第三章函数的应用教案 新人教版必修1 教案.doc
23页第三章 函数的应用 一、课程要求本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题 .1 .通过二次函数的图象,懂得判断一元二次方程根的存在性与根的个数,通过具体的函数例子,了解函数零点与方程根的联系.2. 根据函数图象,借助计算器或电脑,学会运用二分法求一些方程的近似解,了解二分法的实际应用,初步体会算法思想.3. 借助计算机作图,比较指数函数、对数函数、幂函数的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的关系 .4. 收集现实生活中普遍使用几种函数模型的案例,体会三种函数模型的应用价值,发展学习应用数学知识解决实际问题的意识.二、 编写意图和教学建议1. 教材高度重视函数应用的教学,注重知识间的相互联系(比如函数、方程、不等式之间的关系,图象零点与方程根的关系).2. 教材通过具体例子介绍二分法,让学生初步体会算法思想, 以及从具体到一般的认识规律.此外, 还渗透了配方法、待定分数法等数学思想方法.3.教材高度重视信息技术在本章教学中的作用,比如,利用计算机创设问题情境,增加了学生的学习兴趣,利用计算机描绘、比较三种增长模型的变化情况,展示的不同取值而动态变化的规律,形象、生动,利于学生深刻理解. 因此,教师要积极开发多媒体教学课件,提高课堂教学效率.4.教材安排了“阅读与思考”的内容,肯在提高学生的数学文化素养,教师应引导学生通过查阅、收集、整理、分析相关材料,增强信息处理的能力,培养探究精神,提高数学素养.5.本章最后安排了实习作业,学生通过作业实践,体会函数模型的建立过程,真实感受数学的应用价值. 教师可指导学生分组完成,并认真小结,展示、表扬优秀的作业,并借以充实自己的教学案例 .三、教学内容与课时的安排建议全章教学时间约需9课时.3.1 函数与方程 3课时3.2函数模型及其应用 4课时实习作业 1课时小结 1课时3.1.1方程的根与函数的零点一、 教学目标1. 知识与技能①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.②培养学生的观察能力.③培养学生的抽象概括能力.2. 过程与方法①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.②让学生归纳整理本节所学知识.3. 情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.二、教学重点、难点 重点 零点的概念及存在性的判定.难点 零点的确定.三、学法与教学用具1. 学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
2. 教学用具:投影仪四、教学设想(一)创设情景,揭示课题1、提出问题:一元二次方程 ax2+bx+c=0 (a≠0)的根与二次函数y=ax2+bx+c(a≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)①方程与函数②方程与函数 ③方程与函数 1.师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流 研讨新知函数零点的概念:对于函数,把使成立的实数叫做函数的零点.函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.函数零点的求法:求函数的零点:①(代数法)求方程的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.1.师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:①代数法; ②几何法.2.根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.二次函数的零点:二次函数 .(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.3.零点存在性的探索:(Ⅰ)观察二次函数的图象:① 在区间上有零点______;_______,_______,_____0(<或>=).② 在区间上有零点______;____0(<或>=).(Ⅱ)观察下面函数的图象① 在区间上______(有/无)零点;_____0(<或>=).② 在区间上______(有/无)零点;_____0(<或>=).③ 在区间上______(有/无)零点;_____0(<或>=).由以上两步探索,你可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?4.生:分析函数,按提示探索,完成解答,并认真思考.师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.师:引导学生理解函数零点存在定理,分析其中各条件的作用.(三)、巩固深化,发展思维1.学生在教师指导下完成下列例题例1. 求函数f(x)=㏑x+2x -6的零点个数。
问题:(1)你可以想到什么方法来判断函数零点个数?(2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?例2.求函数,并画出它的大致图象.师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.2.P97页练习第二题的(1)、(2)小题(四)、归纳整理,整体认识1. 请学生回顾本节课所学知识内容有哪些,所涉及到的主要数学思想又有哪些;2. 在本节课的学习过程中,还有哪些不太明白的地方,请向老师提出五)、布置作业 P102页练习第二题的(3)、(4)小题3.1.2用二分法求方程的近似解一、 教学目标1. 知识与技能(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;(2)体会程序化解决问题的思想,为算法的学习作准备2. 过程与方法(1)让学生在求解方程近似解的实例中感知二分发思想;(2)让学生归纳整理本节所学的知识3. 情感、态度与价值观①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;②培养学生认真、耐心、严谨的数学品质。
二、 教学重点、难点重点:用二分法求解函数f(x)的零点近似值的步骤难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?三、 学法与教学用具1. 想-想2. 教学用具:计算器四、教学设想(一)、创设情景,揭示课题 提出问题:(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?(二)、研讨新知 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围 取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)*f(3)<0,所以零点在区间(2.5,3)内;再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)*f(2.5)<0,所以零点在(2.5,2.75)内;由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。
例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值这种求零点近似值的方法叫做二分法1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法 2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?先由学生思考几分钟,然后作如下说明:设函数零点为x0,则a<x0<b,则:0<x0-a<b-a,a-b<x0-b<0;由于︱a - b ︳<,所以︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,即a或b 作为零点x0的近似值都达到了给定的精确度㈢、巩固深化,发展思维1. 学生在老师引导启发下完成下面的例题例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)问题:原方程的近似解和哪个函数的零点是等价的?师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.(四)、归纳整理,整体认识 在师生的互动中,让学生了解或体会下列问题:(1) 本节我们学过哪些知识内容?(2) 你认为学习“二分法”有什么意义?(3) 在本节课的学习过程中,还有哪些不明白的地方?(五)、布置作业 P102习题3.1A组第四题,第五题。
3.2.1 几类不同增长的函数模型一、教学目标:1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.二、 教学重点、难点:1. 教学重点 将实际问题转化为函数模型,比较常数函数。





