
标准CRC生成多项式如下表:.doc
11页标准CRC生成多项式如下表: 名称 生成多项式 简记式* 标准引用 CRC-4 x4+x+1 3 ITU G.704 CRC-8 x8+x5+x4+1 0x31 CRC-8 x8+x2+x1+1 0x07 CRC-8 x8+x6+x4+x3+x2+x1 0x5E CRC-12 x12+x11+x3+x+1 80F CRC-16 x16+x15+x2+1 8005 IBM SDLC CRC16-CCITT x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP 生成多项式的最高位固定的1,故在简记式中忽略最高位1了,如0x1021实际是0x11021。
I、基本算法(人工笔算): 以CRC16-CCITT为例进行说明,CRC校验码为16位,生成多项式17位假如数据流为4字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0];数据流左移16位,相当于扩大256×256倍,再除以生成多项式0x11021,做不借位的除法运算(相当于按位异或),所得的余数就是CRC校验码发送时的数据流为6字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]、CRC[1]、CRC[0];II、计算机算法1(比特型算法): 1)将扩大后的数据流(6字节)高16位(BYTE[3]、BYTE[2])放入一个长度为16的寄存器; 2)如果寄存器的首位为1,将寄存器左移1位(寄存器的最低位从下一个字节获得),再与生成多项式的简记式异或; 否则仅将寄存器左移1位(寄存器的最低位从下一个字节获得); 3)重复第2步,直到数据流(6字节)全部移入寄存器; 4)寄存器中的值则为CRC校验码CRC[1]、CRC[0]III、计算机算法2(字节型算法):256^n表示256的n次方 把按字节排列的数据流表示成数学多项式,设数据流为BYTE[n]BYTE[n-1]BYTE[n-2]、、、BYTE[1]BYTE[0],表示成数学表达式为BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+...+BYTE[1]*256+BYTE[0],在这里+表示为异或运算。
设生成多项式为G17(17bit),CRC码为CRC16 则,CRC16=(BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+...+BYTE[1]×256+BYTE[0])×256^2/G17,即数据流左移16位,再除以生成多项式G17 先变换BYTE[n-1]、BYTE[n-1]扩大后的形式, CRC16=BYTE[n]×256^n×256^2/G17+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =(Z[n]+Y[n]/G17)×256^n+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{Y[n]×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{(YH8[n]×256+YHL[n])×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17}×256^(n-1)+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 这样就推导出,BYTE[n-1]字节的CRC校验码为{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17},即上一字节CRC校验码Y[n]的高8位(YH8[n])与本字节BYTE[n-1]异或,该结果单独计算CRC校验码(即单字节的16位CRC校验码,对单字节可建立表格,预先生成对应的16位CRC校验码),所得的CRC校验码与上一字节CRC校验码Y[n]的低8位(YL8[n])乘以256(即左移8位)异或。
然后依次逐个字节求出CRC,直到BYTE[0] 字节型算法的一般描述为:本字节的CRC码,等于上一字节CRC码的低8位左移8位,与上一字节CRC右移8位同本字节异或后所得的CRC码异或 字节型算法如下: 1)CRC寄存器组初始化为全"0"(0x0000)注意:CRC寄存器组初始化全为1时,最后CRC应取反 2)CRC寄存器组向左移8位,并保存到CRC寄存器组 3)原CRC寄存器组高8位(右移8位)与数据字节进行异或运算,得出一个指向值表的索引 4)索引所指的表值与CRC寄存器组做异或运算 5)数据指针加1,如果数据没有全部处理完,则重复步骤2) 6)得出CRCunsigned short GetCrc_16(unsigned char * pData, int nLength)//函数功能:计算数据流* pData的16位CRC校验码,数据流长度为nLength{ unsigned short cRc_16 = 0x0000; // 初始化 while(nLength>0) { cRc_16 = (cRc_16 << 8) ^ cRctable_16[((cRc_16>>8) ^ *pData) & 0xff]; //cRctable_16表由函数mK_cRctable生成 nLength--; pData++; } return cRc_16; }void mK_cRctable(unsigned short gEnpoly)//函数功能:生成0-255对应的16CRC校验码,其实就是计算机算法1(比特型算法)//gEnpoly为生成多项式//注意,低位先传送时,生成多项式应反转(低位与高位互换)。
如CRC16-CCITT为0x1021,反转后为0x8408{ unsigned short cRc_16=0; unsigned short i,j,k; for(i=0,k=0;i<256;i++,k++) { cRc_16 = i<<8; for(j=8;j>0;j--) { if(cRc_16&0x8000) //反转时cRc_16&0x0001 cRc_16=(cRc_16<<=1)^gEnpoly; //反转时cRc_16=(cRc_16>>=1)^gEnpoly else cRc_16<<=1; //反转时cRc_16>>=1 } cRctable_16[k] = cRc_16; }}这几天研究了一下CRC算法,碰到了一些问题,研究了一下,小有心得 CRC算法是在通讯领域广泛采用的校验算法原理我就不说了,这里说一下简单的程序实现以下均采用CRC多项式为0x1021即:g(x) = x16+x12+x5+x0;CRC的基本原理就不说了,那个搜一下就有了。
最基本的算法应该是按位计算了,这个方法可以适用于所有长度的数据校验,最为灵活,但由于是按位计算,其效率并不是最优,只适用于对速度不敏感的场合基本的算法如下:unsigned short do_crc_16(unsigned char *message, unsigned int len){ int i, j; unsigned short crc_reg = 0; unsigned short current; for (i = 0; i < len; i++) { current = message[i] << 8; for (j = 0; j < 8; j++) { if ((short)(crc_reg ^ current) < 0) crc_reg = (crc_reg << 1) ^ 0x1021; else crc_reg <<= 1; current <<= 1; } } return crc_reg;}以是方法可以计算出任意长度数据的校验。
但速度慢下面介绍一种按字节计算的方法:按字节校验是每次计算8位数据,多是基于查表的算法,首先要准备一个表,一共256项unsigned int crc_ta[256]={ /* CRC余式表 */ 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x。












