
高中数学第十三章4第讲离散型随机变量及其概率分布.doc
7页第4讲 离散型随机变量及其概率分布分层训练A级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若随机变量X的概率分布列为Xx1x2Pp1p2且p1=p2,则p1等于________.解析 由p1+p2=1且p2=2p1可解得p1=.答案 2.设随机变量X的概率分布P(X=k)=,k=0、1、2、3,则c=________.解析 由P(X=0)+P(X=1)+P(X=2)+P(X=3)=1得:+++=1,∴c=.答案 3.已知随机变量X的分布列为P(X=i)=(i=1,2,3),则P(X=2)等于________.解析 ∵++=1,∴a=3,P(X=2)==.答案 4.设某项试验的成功率为失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)的值为________.解析 设X的概率分布为:X01Pp2p即“X=0”表示试验失败,“X=1”表示试验成功,设失败的概率为p,成功的概率为2p.由p+2p=1,则p=.答案 5.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于________.解析 “X=12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P(X=12)=C92=C102.答案 C1026.随机变量X的概率分布为P(X=k)=ak,k=1,2,3,…,则a的值为________.解析 由(X=k)=1,即a=1.∴a=1,解得a=.答案 二、解答题(每小题15分,共30分)7.鲁川在鱼缸中养了3条白色、2条红色和n条黑色金鱼,现从中任取2条金鱼进行观察,每取得1条白色金鱼得1分,每取得1条红色金鱼得2分,每取得1条黑色金鱼得0分,用X表示所得的分数,已知得0分的概率为,(1)求鱼缸中黑色金鱼的条数n;(2)求X的概率分布.解 (1)因为P(X=0)==,所以n2-3n-4=0,解得n=4(n=-1舍去).即鱼缸中有4条黑色金鱼.(2)由题意,得X的可能取值为0,1,2,3,4.因为P(X=0)=,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,所以X的概率分布为X01234P8.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为,,.(1)求该高中获得冠军个数X的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.解 (1)∵X的可能取值为0,1,2,3,取相应值的概率分别为P(X=0)=××=,P(X=1)=××+××+××=,P(X=2)=××+××+××=,P(X=3)=××=.∴X的分布列为X0123P(2)∵得分η=5X+2(3-X)=6+3X,∵X的可能取值为0,1,2,3.∴η的可能取值为6,9,12,15,取相应值的概率分别为P(η=6)=P(X=0)=,P(η=9)=P(X=1)=,P(η=12)=P(X=2)=,P(η=15)=P(X=3)=.∴得分η的分布列为η691215P分层训练B级 创新能力提升1.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数,则P(X≤1)等于________.解析 P(X≤1)=1-P(X=2)=1-=.答案 2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为________.解析 用完后装回盒中,此时盒中旧球个数X是一个随机变量.当X=4时,说明取出的3个球有2个旧球,1个新球,∴P(X=4)==.答案 3. 如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为X,则P(X≥8)=________.解析 法一 由已知,X的取值为7,8,9,10,∵P(X=7)==,P(X=8)==,P(X=9)==,P(X=10)==,∴X的概率分布为X78910P∴P(X≥8)=P(X=8)+P(X=9)+P(X=10)=++=.法二 P(X≥8)=1-P(X=7)=1-=.答案 4.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.解析 X=-1,甲抢到一题但答错了.X=0,甲没抢到题,或甲抢到2题,但答时一对一错.X=1时,甲抢到1题且答对或甲抢到3题,且一错两对,X=2时,甲抢到2题均答对.X=3时,甲抢到3题均答对.答案 -1,0,1,2,35.(2013·深圳调研)第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如图所示的茎叶图(单位:cm):若身高在175 cm以上(包括175 cm)定义为“高个子”,身高在175 cm以下(不包括175 cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列.解 (1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是=.∴选中的“高个子”有12×=2(人),“非高个子”有18×=3(人).用事件A表示“至少有一名‘高个子’被选中”,则它的对立事件表示“没有一名‘高个子’被选中”,则P(A)=1-=1-=.∴至少有一人是“高个子”的概率是.(2)依题意,ξ的取值为0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.∴ξ的分布列如下:ξ0123P6.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X的概率分布,并求李明在一年内领到驾照的概率.解 X的取值分别为1,2,3,4.X=1,表明李明第一次参加驾照考试就通过了,故P(X=1)=0.6.X=2,表明李明在第一次考试未通过,第二次通过了,故P(X=2)=(1-0.6)×0.7=0.28.X=3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.∴李明实际参加考试次数X的概率分布为X1234P0.60.280.0960.024李明在一年内领到驾照的概率为1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.。












