好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

三年级新教材解读2014新.doc

20页
  • 卖家[上传人]:cl****1
  • 文档编号:555483855
  • 上传时间:2023-07-27
  • 文档格式:DOC
  • 文档大小:112KB
  • / 20 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 数学三年级上册教材解读一、 首先从新、旧教材的目录,简单介绍教材单元的调整情况1.重新整合乘、除数是一位数的乘、除法第一单元的除法放在了第四单元,由原先的两位数除以一位数,改成了两、三位数除以一位数也就是将本来三年级下册的三位数除以一位数移到了上册,重新进行了整合与上面相同的是原先的乘法,也整合成了两、三位数乘一位数,也是将下册的内容提前了这样做的主要原因主要有两个,一是修订后的教材把千以内数的认识和万以内数的认识这两个教学内容整合成了《认识万以内的数》,因而没有必要再把千以内数的认识相匹配的一位数乘、除两位数作为计算内容单独安排,调整后内容由零碎变得完整;二是为了给学生提供更多的自主探索计算方法的机会,当他们学会了两位数乘一位数的方法后自觉得类推出三位数乘一位数;学会两位数除以一位数的方法后类推出三位数除以一位数,从而更加完整地理解计算的基本原理和方法但这么多的计算内容集中安排在三年级上册,对学生的计算能力提出很高的要求2.增设“从条件出发分析和解决问题”的策略解决问题的策略是苏教版教科书的特色内容之一解决问题的策略在本轮修订中有三个变化:1.降低了解决问题的难度删掉了难题,降低了例题的难度。

      2.突出了解决问题的步骤四大步骤:(1)理解问题2)分析问题3)解决解答4)回顾反思用外显的形式让学生清楚地感受到解决问题有四大步骤3.增设了从条件出发和从问题出发分析问题的策略以前称之为分析法和综合法增设这个内容,主要实质就是在条件和问题之间建立起一种联系,建立这种联系的基本手段就是要么从条件出发,要么从问题出发三年级上册侧重是从条件出发分析解决问题的策略,三年级下册侧重从问题出发分析解决问题的策略,四年级上册则是灵活运用从条件或问题出发解决问题的策略通过这三段的学习,为学生“解决问题策略”这一板块的后续学习打下坚实的基础,提供良好的支持3.从本册起,逐册安排“探索规律”专题活动在一、二年级,教材主要结合相关教学内容引导学生自主探索一些简单的数和图形规律从本册起,教材开始逐册安排相对独立的“探索规律”专题活动与之前教材相比,这部分内容不再按单元编排,而是通过专题活动让学生经历探索和发现规律的过程,并在此过程中体会由具体到抽象,由特殊到一般的归纳思想;同时,突出对探索过程的回顾和反思,大幅度降低应用规律解决问题的要求这样重点感悟数学思想,而不是用规律进行题海训练4.提前安排“平移、旋转和轴对称”,适当降低教学要求。

      本册教材安排的《平移、旋转和轴对称》,由原先教材中两个单元整合而成根据课程标准的要求,这部分内容的教学要求有所降低;不再要求在方格纸上平移简单图形,也不再要求补全一个轴对称图形教学的重点是让学生通过观察生活中的运动现象和形式多样的操作活动,初步感受图形运动与变化的一些基本方式和特点,逐步增强空间观念原先的“认数”“加和减”单元则是移到了二年级下册,学生已经学完了5.“24时记时法”“观察物体”和“可能性”后移“24时记时法”中求简单经过时间对学生来说存在难度,因此从三年级上册移至三年级下册,与年、月、日的认识合并成一个单元,主要是为了便于学生利用生活经验更好地理解和应用知识,降低学习难度内容原三年级上册和下册安排的“观察物体”,经过整合一并安排在四年级上册,这是因为课程标准把“辨认从不同方向(前面、侧面、上面)看到的物体的形状图”这一要求从第一学段移到了第二学段同样的原因,原三年级上册安排的可能性及其大小的内容也后移至四年级上册二、分单元解析,了解各单元的教学内容,编排变化和教学建议1.两、三位数乘一位数 1. 编排例题教学几十乘一位数和几百乘一位数 “想想做做”第1题把表内乘法和相应的几十乘一位数、几百乘一位数组成题组,如4×2、40×2和400×2为一组,5×8、5×80和5×800为一组。

      充分利用这些题组,应该让学生看出同组三题的计算用了同一句乘法口诀,而三道题依次是几个一乘几、几个十乘几、几个百乘几,分别得到若干个一、若干个十、若干个百学生体验了同一组题之间的联系和区别,他们口算几十乘一位数、几百乘一位数,就可以利用乘法口诀,直接写出得数了2.  在练习里带出两位数乘一位数1) 练习二第8题首次口算两位数乘一位数,都是不进位的乘法教材设计题组,引导学生形成口算的思路如30×2、32×2和34×2这一组题里,先口算30×2得60,再口算32×2,它的积应该大于60,比60大“2个2”,即比60大4所以口算32×2的思考过程是:30乘2得60,再加2乘2的积,最终结果是64接着口算34×2就应该想“60加8,是68”把不进位的两位数乘一位数的得数看成“几十加几”是很好的思路它把两位数转化为整十数加一位数,它从高位算起符合口算的基本特点,它还蕴含着乘法分配律的思想教学乘法口算,不能只关心得数是否正确,还要关注计算思路和方法是否合理尤其要努力避免乘法笔算从低位算起的定势,对乘法口算从高位算起产生的干扰2) 练习三第6题开始口算需要进位的两位数乘一位数教材设计题组,由不进位乘法引出进位的乘法。

      如13×3和16×3为一组,24×2和24×3为一组口算不进位乘法的思路完全可以应用于进位的乘法,它们的不同在于:不进位乘法想“几十加几”,进位的乘法想“几十加十几”或“几十加几十几”如13×3转化成30加9,而16×3转化成30加18可见,合理且稳定的不进位乘法口算思路有利于口算进位的乘法3. 在练习里经常安排一位数乘一位数再加一位数的口算一位数乘一位数再加一位数是最简单的“乘加”计算,对乘法笔算有很大的影响笔算乘法里的每一次进位,都要进行这样的计算如,笔算29×4时,在积的个位上写“6”以后,接着算的2×4+3,就是一次“乘加”计算有些学生笔算乘法,往往在进位上出现错误,其原因之一在于口算“乘加”的正确率不高一位数的“乘加”是二年级《表内乘法》里教学的,学生应该会算本单元在例5教学进位的乘法笔算之前与之后,多次编排这种口算练习,意图是很明显的有经验的教师会知道,学生笔算乘法如果发生错误,一般不在几乘几上,而在加进上来的数的过程中因为几乘几在竖式上能够看到,而加进上来的数则完全在头脑里进行,没有视觉的帮助如29×4的竖式,“2乘4”能够看着算,“8加进上来的3”只能想着算,错误主要发生在8加3这一步。

      所以,有效地练习“乘加”,需要视算与听算结合如口算6×8+5,把“6×8”写在卡片上,让学生看着算;“加5”由教师口述,让学生想48加5得多少二)在现实背景中感受估算的意义和价值结合具体情境,选择适当的单位进行简单估算是课程标准的明确要求,本册教材在教学整十、整百数乘一位数的口算之后,引导学生在简单的购物情境中学习两、三位数乘一位数的估算说到估算,我们老师脑海里呈现的是这样情景:198×3怎么估算?先把198看成200,200×3=600,198×3的积大约是600这不是真正意义上的估算,真正意义上的估算是什么?1.要有现实背景例2给出西瓜每箱48元,哈密瓜每箱62元这两个条件,问题不是买4箱西瓜要多少钱,而是“带200元钱买4箱西瓜够不够”这个问题情境一方面不要求算出48×4的精确得数,只要回答48×4的积比200大还是小;另一方面学生还不会笔算48×4,只会口算50×4在这样的氛围中,引入估算是比较自然的估算应接着掌握的口算教学,估算要避免笔算的干扰2.尽量让学生自主进行估算例2没有告诉学生怎样估算,而是让他们直接解决“带200元钱够不够”的问题,并交流想法学生一般会这样想:如果每箱50元,买4箱正好要200元;事实上每箱48元,不满50元,买4箱的钱一定不会超过200元,所以带200元买4箱西瓜够了。

      这是联系生活经验的思考,能很好地解决问题教学要充分利用上述资源,并加强其数学化程度一是帮助学生体会估算的方法:把48看作50(因为48接近50),50×4等于200,48×4小于200二是帮助学生体会估算的思想:把不能直接说出得数的计算,看成已经掌握口算,估计得数大约是多少三是帮助学生体会估算的价值:应用于解决实际问题,能比较方便地回答问题3. 让学生愿意估算例2引导学生经历解决问题的过程,在头脑里估算,不写出估算的步骤和方法,直接口头回答问题试一试”回答“带300元买5箱哈密瓜够不够”,只要在“够”或“不够”两个答案中选择一个,用画“√”的方式回答问题教材鼓励学生积极运用估算解决问题,只要他们会思考、会估计,暂时降低书写的要求教学应该理解教材的这个意愿,并落实到估算教学中去想想做做第7题有3种火车票,价格分别是每张198元、312元、405元买3张同样的火车票,付出1000元问题是“买了哪一种火车票?”这道题涉及三位数乘一位数的估算通过估算,首先排除每张405元的火车票因为405接近400,且大于400,400×3=1200,买3张这种火车票的钱超过1000元然后通过估算排除每张198元的火车票,因为198接近且小于200,200×3=600,买3张这种火车票不需要付1000元。

      最后通过估算确认每张312元的火车票,由于312接近且稍大于300,300×3=900,买3张这样的火车票的钱接近1000元此外,教材在练习中不再安排脱离情境的估算,只是着眼进位的处理安排少量估计积是几位数的习题在教学时要注意这样的变化,下面再看几道习题:(见ppt)这样的估计贴近生活更具有现实意义三) 算理与算法并重,让学生有意义地掌握笔算方法教材编排例5、例6、例7三道例题,引导学生经历建构竖式、体验进位、掌握连续进位的过程例5第一次教学乘法竖式,其教学内容包括:怎样写乘法竖式——两个乘数以及积在竖式中的位置;怎样算乘法竖式——乘的步骤以及每一步的计算内容;怎样验算乘法——再乘一遍看两次得数是否相同1) 摆小棒,形成并整理计算的思路例5求一共有多少只大雁,就是求3个12是多少,列出乘法算式12×3以后,要求学生用小棒摆出3个12,看看一共是多少,想想可以怎样计算学生看着摆出的小棒,都知道3个12是36,但算出36的方法会是多样的 “蘑菇”卡通看着小棒的思考是:“3个10是30,3个2是6,30和6合起来是36辣椒”卡通的算法是:“3×10=30,3×2=6,30+6=36这两个卡通都用乘法解决问题,本质上完全一致,是建构乘法竖式的主要资源,教学要开发和利用的就是这些想法与算法。

      2) 写竖式,凸显有意义的结构第一次教学乘法竖式,要让学生从外在形式和内在结构两个角度感受竖式首先,指出两位数乘一位数的竖式的写法一般把两位数写在上面,一位数写在两位数的末位的下面(不说“相同数位对齐”),并在一位数的左边写出乘号“×”如12×3然后,把摆小棒的算法反映到竖式上,变成竖式的计算过程,让学生意义接受竖式上的计算12×3……3个2根是6根,3×2=6……3个10根是30根,3×10=30……6根和30根合起来是36根,6+30=36学生意义接受乘法竖式,不仅要边看老师的板书、边听老师的讲述、边想摆小棒时的计算,还要看着写成的竖式,从“6”到“30”直至“36”依次说出它们的具体意思和相应的计算过程通过对乘法竖式的复述,体会结构、内化算法接着,优化竖式,按人们的一般写法进行计算不能把乘法竖式的一般写法当作另一种乘法竖式教学,因为竖式的一般写法是上面初步建构的竖式的简化、优化,是人们普遍使用的写法教学竖式的一般写法,应该在反思初步建构的竖式的基础上进行在初步建构的竖式上,乘法分成三步进行:3乘2得6,写出“6”;3乘10得30,数位对齐着写出“30”;6加30得36,按一位数加两位数的笔算写出“36”。

      在一般写法上,三步计算连贯地进行,三步计算。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.