
2021-2022学年河南省新乡市丁村乡中学高一数学理上学期期末试题含解析.docx
6页2021-2022学年河南省新乡市丁村乡中学高一数学理上学期期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 在数列,则该数列中相邻两项的乘积是负数的是( ) A. B. C. D.参考答案:C2. 下列函数中,在其定义域既是奇函数又是减函数的是( )A.y=|x| B.y=﹣x3 C.y=()x D.y=参考答案:B【考点】奇偶性与单调性的综合.【分析】根据奇函数和减函数的定义判断即可.【解答】解:对于A:y=f(x)=|x|,则f(﹣x)=|﹣x|=|x|是偶函数.对于B:y=f(x)=﹣x3,则f(﹣x)=x3=﹣f(x)是奇函数,根据幂函数的性质可知,是减函数.对于C:,根据指数函数的性质可知,是减函数.不是奇函数.对于D:定义为(﹣∞,0)∪(0,+∞),在其定义域内不连续,承载断点,∴在(﹣∞,0)和在(0,+∞)是减函数.故选B.【点评】本题考查了函数的性质之奇函数和减函数的定义的运用.比较基础.3. 设f(x)是偶函数且在(﹣∞,0)上是减函数,f(﹣1)=0则不等式xf(x)>0的解集为( )A.(﹣1,0)∪(0,1) B.(﹣∞,﹣1)∪(1,+∞) C.(﹣1,0)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)参考答案:C【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】先根据偶函数的性质确定函数在(0,∞)上是增函数,再将不等式等价变形,利用函数的单调性,即可求解不等式.【解答】解:∵f(x)是偶函数且在(﹣∞,0)上是减函数,∴函数在(0,+∞)上是增函数,∵f(﹣1)=0,∴f(1)=0,则不等式xf(x)>0等价于或,解得x>1或﹣1<x<0,故不等式xf(x)>0的解集为(﹣1,0)∪(1,+∞),故选:C.【点评】本题主要考查函数的单调性和奇偶性的应用,体现了分类讨论的数学思想,属于中档题.4. 在用二分法求方程的一个近似解时,现在已经将一根锁定在(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2) B.(1,1.4) C.(1,1.5) D.(1.5,2)参考答案:D5. 有8名学生,其中有5名男生.从中选出4名代表,选出的代表中男生人数为X,则其数学期望为( )A.2 B.2.5 C.3 D.3.5参考答案:B6. (5分)若直线l∥平面α,直线a?α,则l与a的位置关系是() A. l∥a B. l与a异面 C. l与a相交 D. l与a平行或异面参考答案:D考点: 空间中直线与直线之间的位置关系. 专题: 阅读型.分析: 可从公共点的个数进行判断.直线l∥平面α,所以直线l∥平面α无公共点,故可得到l与a的位置关系解答: 直线l∥平面α,所以直线l∥平面α无公共点,所以l与a平行或异面.故选D点评: 本题考查空间直线和平面位置关系的判断,考查逻辑推理能力.7. 若某程序框图如图所示,则该程序运行后输出的值是( )A. 3 B. 4 C. 5 D. 6参考答案:C【分析】根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到 结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.8. 已知集合,集合,若,那么的值是( )A . 1 B. C . 1或 D . 0,1或参考答案:D略9. 已知直线l经过两点,那么直线l的斜率为( )A.-3 B. C. D.3参考答案:C10. 下列指数式与对数式互化不正确的一组是( )A. B. C. D. 参考答案:C二、 填空题:本大题共7小题,每小题4分,共28分11. 函数的图象恒过定点,则点坐标是 .参考答案:略12. 函数的单调递增区间为 参考答案:,,令求得则函数的单调递增区间为,故答案为, 13. 比较大小: .参考答案:略14. 函数的定义域为 . 参考答案:15. 请阅读右边的算法流程图:若,, 则输出的应该是 。
填中的一个)参考答案:16. 等差数列前n项和为,已知, ,则=_______. 参考答案:4028略17. 若,,则 .参考答案:1三、 解答题:本大题共5小题,共72分解答应写出文字说明,证明过程或演算步骤18. 比较下列各组数值的大小:(1)和;(2)和;(3)参考答案:解析:(1)∵,∴(2)∵,∴(3)∴19. (本题满分15分)已知二次函数f (x)=x2+mx+n对任意x∈R,都有f (-x) = f (2+x)成立,设向量= ( sinx , 2 ) ,= (2sinx , ),= ( cos2x , 1 ),=(1,2),(Ⅰ)求函数f (x)的单调区间;(Ⅱ)当x∈[0,π]时,求不等式f (·)>f (·)的解集.参考答案:解;(1)设f(x)图象上的两点为A(-x,y1)、B(2+x, y2),因为=1 f (-x) = f (2+x),所以y1= y2由x的任意性得f(x)的图象关于直线x=1对称,∴x≥1时,f(x)是增函数 ;x≤1时,f(x)是减函数2)∵·=(sinx,2)·(2sinx, )=2sin2x+1≥1,·=(cos2x,1)·(1,2)=cos2x+2≥1,∵f(x)在是[1,+∞)上为增函数,∴f (·)>f (·)f(2sin2x+1)> f(cos2x+2) 2sin2x+1>cos2x+21-cos2x+1>cos2x+2 cos2x<02kπ+<2x<2kπ+,k∈zkπ+<x<kπ+, k∈z ∵0≤x≤π ∴<x<综上所述,不等式f (·)>f (·)的解集是:{ x|<x< } 。
略20. (12分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;(2)设过点P的直线ll与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;(3)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.参考答案:考点: 直线与圆的位置关系. 专题: 计算题;直线与圆.分析: (1)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到l的方程,经过验证符合题意;(2)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(3)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答: (1)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由=1,解得k=﹣.所以直线方程为y=﹣(x﹣2),即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(2)由于|CP|=,而弦心距d=,所以d=|CP|=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(3)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率kPC=﹣2,而,所以a=.由于?(﹣∞,0),故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评: 此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.21. 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(14分)(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?参考答案:(1)(且为正整数);(2).,当时,有最大值2402.5.,且为正整数,当时, ,(元),当时,,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元;略22. (12分)下面的一组图形为某一四棱锥S﹣ABCD的侧面与底面.(1)请画出四棱锥S﹣ABCD的示意图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由;(2)若SA⊥面ABCD,E为AB中点,求证面SEC⊥面SCD.参考答案:考点: 平面与平面垂直的判定;由三视图还原实物图. 专题: 计算题;作图题.分析: (1)由 SA⊥AB,SA⊥AD 可得,存在一条侧棱SA垂直于底面.(2)分别取SC、SD的中点G、F,可证AF∥EG.证明CD⊥AF,AF⊥SD,从而证明 AF⊥面SCD,故EG⊥面SCD,从而证得面SEC⊥面SCD.解答: (1)存在一条侧棱垂直于底面.证明:∵SA⊥AB,SA⊥AD,且AB、AD是面ABCD内的交线,∴SA⊥底面ABCD.(2)分别取SC、SD的中点G、F,连GE、GF、FA,则GF∥EA,GF=EA,∴AF∥EG.而由SA⊥面ABCD得 SA⊥CD,又AD⊥CD,∴CD⊥面SAD,∴CD⊥AF,又SA=AD,F是中点,∴AF⊥SD,∴AF⊥面SCD,EG⊥面SCD,∴面SEC⊥面SCD.点评: 本题考查证明线面垂直、面面垂直的方法,体现了数形结合的数学思想,证明AF⊥面SCD是解题的关键.。












