
小升初数学必出的20种应用题与解题思路.docx
12页小升初数学必出的20种应用题与解题思路 小升初数学考试当中有一类题型叫做应用题,应用题是必出的,但是应用题有许多种类型,我整理了相关资料,希望能帮助到您 1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元? 解题思路: 由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱再依据椅子的价钱,就可求得一张桌子的价钱 解: 一把椅子的价钱:288÷(10-1)=32(元) 一张桌子的价钱:32x10=320(元) 答:一张桌子320元,一把椅子32元 2.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇甲比乙速度快,甲每小时比乙快多少千米? 解题思路: 依据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4x2千米,又知经过4小时相遇即可求甲比乙每小时快多少千米 解: 4x2÷4=8÷4=2(千米) 答:甲每小时比乙快2千米。
3.李军和张强同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱每支铅笔多少钱? 解题思路: 依据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应当得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱 解: 0.6÷[13-(13+7)÷2]=0.6÷[1320÷2]=0.6÷3=0.2(元) 答:每支铅笔0.2元 4.甲、乙两辆客车上午8时同时从两个车站动身,相向而行,经过一段时间,两车同时到达一条河的两岸由于河上的桥正在修理,车辆禁止通行,两车需交换乘客,然后按原路返回各自动身的车站,到站时已是下午2点甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计) 解题思路: 依据已知两车上午8时从两站动身,下午2点返回原车站,可求出两车所行驶的时间依据两车的速度和行驶的时间可求两车行驶的总路程。
解: 下午2点是14时 来回用的时间:14-8=6(时) 两地间路程:(40+45)x6÷2=85x6÷2=255(千米) 答:两地相距255千米 5.学校组织两个课外爱好小组去郊外活动第一小组每小时走4.5千米,其次小组每小时行3.5千米两组同时动身1小时后,第一小组停下来参观一个果园,用了1小时,再去追其次小组多长时间能追上其次小组? 解题思路: 第一小组停下来参观果园时间,其次小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追逐的路程又知第一组每小时比其次组快(?4.5-3.5)千米,由此便可求出追逐的时间 解: 第一组追逐其次组的路程:3.5-(4.5-?3.5)=3.5-1=2.5(千米) 第一组追逐其次组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时) 答:第一组2.5小时能追上其次小组 6.有甲、乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨? 解题思路: 依据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮假如增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数 解: 乙仓存粮:(32.5x2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨) 甲仓存粮:14x4-5=56-5=51(吨) 答:甲仓存粮51吨,乙仓存粮14吨 7. 甲、乙两队共同修一条长400米的马路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米甲、乙两队每天共修多少米? 解题思路: 依据甲队每天比乙队多修10米,可以这样考虑:假如把甲队修的4天看作和乙队4天修的同样多,那么总长度就削减4个10米,这时的长度相当于乙(4+5)天修的由此可求出乙队每天修的米数,进而再求两队每天共修的米数 解: 乙每天修的米数: (400-10x4)÷(4+5)=(400-40)÷9=360÷9=40(米) 甲乙两队每天共修的米数:40x2+10=80+10=90(米) 答:两队每天修90米。
8. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元? 解题思路: 已知每张桌子比每把椅子贵30元,假如桌子的单价与椅子同样多,那么总价就应削减30x6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价 解: 每把椅子的价钱: (455-30x6)÷(6+5)=(455-180)÷11=275÷11=25(元) 每张桌子的价钱:25+30=55(元) 答:每张桌子55元,每把椅子25元 9.一列火车和一列慢车,同时分别从甲、乙两地相对开出快车每小时行75千米,车每小时行65千米,相遇时快车比慢车多行了40千米,甲、乙两地相距多少千米? 解题思路: 依据已知的两车的速度可求速度差,依据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程 解: (7+65)x[40÷(75- 65)]=140x[40÷10]=140x4=560(千米) 答:甲、乙两地相距560千米。
10. 某玻璃广托运玻璃250箱,合同规定每箱运费20元,假如损坏一箱,不但不付运费还要赔偿100元,运后结算时,共付运费400元,托运中损坏了多少箱玻璃? 解题思路: 依据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数依据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱 解: (20x250-4400)÷(10+20)=600÷120=5(箱) 答:损坏了5箱 11. 王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支问这盒铅笔最少有多少支? 解题思路: 依据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题 解: 2、3、4、5的最小公倍数是60 60-1=59(支) 答:这盒铅笔最少有59支。
12. 五年級一中队和二中队要到距学校20千米的地方去春游第一中队步行每小时行4千米,其次中队骑自行车,每小时行12千米第一中队先动身2小时后,其次中队再动身,其次中队动身后几小时オ能追上一中队? 解题思路: 因第一中队早动身2小时比其次中队先行4x2千米,而每小时其次中队比第一中队多行(12-4)千米,由此即可求其次中队追上第一中队的时间 解: 4x2÷(12-4)=4x2÷8 =1(时) 答:其次中队1小时能追上第一中队 13. 某厂运来一堆煤,假如每天烧1500千克,比安排提前一天烧完,假如每天烧1000千克,将比安排多烧一天这堆煤有多少千克? 解题思路: 由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原安排烧的天数,进而再求出这堆煤的数量 解: 原安排烧煤天数: (1500+1000)÷(1500-1000)=2500÷500=5(天) 这堆煤的重量: 1500x(5-1)=1500x4=6000(千克) 答:这堆煤有6000千克。
14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱结果小红买了8支铅笔和5本练习本,找回0.45元求一支铅笔多少元? 解题思路: 小红准备买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元由此可求练习本的单价比铅笔贵的钱数从总钱数里去掉8个练习本比8支铅笔贵的钱 数,剩余的则是(5+8)支铅笔的钱数进而可求出每支铅笔的价钱 解: 每本练习本比每支铅笔贵的钱数: 0.45÷(8-5)=0.45÷3=0.15(元) 8个练习本比8支铅笔贵的钱数: 0.15x8=1.2(元) 每支铅笔的价钱: (3.8-1.2)÷(5+8)=2.6÷13=0.2(元) 答:每支铅笔0.2元 15.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍? 解题思路: 父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。
又知今年儿子15岁,两个岁数的差就是所求的问题 解: (45-15)÷(11-1)=3(岁) 15-3=12(年) 答:12年前父亲的年龄是儿子年龄的11倍 16. 某筑路队担当了修一条马路的任务原安排每天修720米,实际每天比原安排多修80米,这样实际修的差1200米就能提前3天完成这条马路全长多少米? 解题思路: 依据安排每天修720米,这样实际提前的长度是(720x3-1200)米依据每天多修80米可求已修的天数,进而求马路的全长 解: 已修的天数:(720x3-1200)÷80=960÷8。












