好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

七年级数学下册 培优新帮手 专题02 数的整除性试题 (新版)新人教版.doc

11页
  • 卖家[上传人]:s9****2
  • 文档编号:423956678
  • 上传时间:2022-09-25
  • 文档格式:DOC
  • 文档大小:841KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 02 数的整除性阅读与思考 设,是整数,≠0,如果一个整数使得等式=成立,那么称能被整除,或称整除,记作|,又称为的约数, 而称为的倍数.解与整数的整除相关问题常用到以下知识:1.数的整除性常见特征:①若整数的个位数是偶数,则2|;②若整数的个位数是0或5,则5|;③若整数的各位数字之和是3(或9)的倍数,则3|(或9|);④若整数的末二位数是4(或25)的倍数,则4|(或25|);⑤若整数的末三位数是8(或125)的倍数,则8|(或125|);⑥若整数的奇数位数字和与偶数位数字和的差是11的倍数,则11|.2.整除的基本性质设,,都是整数,有:①若|,|,则|;②若|,|,则|(±);③若|,|,则[,]|;④若|,|,且与互质,则|;⑤若|,且与互质,则|.特别地,若质数|,则必有|或|.例题与求解【例1】在1,2,3,…,2 000这2 000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除. (“五羊杯”竞赛试题)解题思想:自然数能同时被2和3整除,则能被6整除,从中剔除能被5整除的数,即为所求.【例2】已知,是正整数(>),对于以下两个结论:①在+,,-这三个数中必有2的倍数;②在+,,-这三个数中必有3的倍数.其中 ( ) A.只有①正确 B.只有②正确 C.①,②都正确 D.①,②都不正确 (江苏省竞赛试题)解题思想:举例验证,或按剩余类深入讨论证明.【例3】已知整数能被198整除,求,的值. (江苏省竞赛试题)解题思想:198=2×9×11,整数能被9,11整除,运用整除的相关特性建立,的等式,求出,的值.【例4】已知,,都是整数,当代数式7+2+3的值能被13整除时,那么代数式5+7-22的值是否一定能被13整除,为什么? (“华罗庚金杯”邀请赛试题)解题思想:先把5+7-22构造成均能被13整除的两个代数式的和,再进行判断.【例5】如果将正整数M放在正整数左侧,所得到的新数可被7整除,那么称M为的“魔术数”(例如:把86放在415左侧,得到86 415能被7整除,所以称86为415的魔术数),求正整数的最小值,使得存在互不相同的正整数,,…,,满足对任意一个正整数,在,,…,中都至少有一个为的“魔术数”. (2013年全国初中数学竞赛试题)解题思想:不妨设(=1,2,3,…,;=0,1,2,3,4,5,6)至少有一个为的“魔术数”.根据题中条件,利用(是的位数)被7除所得余数,分析的取值.【例6】一只青蛙,位于数轴上的点,跳动一次后到达,已知,满足|-|=1,我们把青蛙从开始,经-1次跳动的位置依次记作:,,,…,.⑴ 写出一个,使其,且++++>0;⑵ 若=13,=2 012,求的值;⑶ 对于整数(≥2),如果存在一个能同时满足如下两个条件:①=0;②+++…+=0.求整数(≥2)被4除的余数,并说理理由. (2013年“创新杯”邀请赛试题)解题思想:⑴.即从原点出发,经过4次跳动后回到原点,这就只能两次向右,两次向左.为保证++++>0.只需将“向右”安排在前即可.⑵若=13,=2 012,从经过1 999步到.不妨设向右跳了步,向左跳了步,则,解得可见,它一直向右跳,没有向左跳.⑶设同时满足两个条件:①=0;②+++…+=0.由于=0,故从原点出发,经过(-1)步到达,假定这(-1)步中,向右跳了步,向左跳了步,于是=-,+=-1,则+++…+=0+()+()+…()=2(++…+)-[()+()+…+()]=2(++…+)-.由于+++…+=0,所以(-1)=4(++…+).即4|(-1).能力训练A级1.某班学生不到50人,在一次测验中,有的学生得优,的学生得良,的学生得及格,则有________人不及格.2.从1到10 000这1万个自然数中,有_______个数能被5或能被7整除. (上海市竞赛试题)3.一个五位数能被11与9整除,这个五位数是________.4.在小于1 997的自然数中,是3的倍数而不是5的倍数的数的个数是( ) A.532 B.665 C.133 D.7985.能整除任意三个连续整数之和的最大整数是( ) A.1 B.2 C.3 D.6 (江苏省竞赛试题)6.用数字1,2,3,4,5,6组成的没有重复数字的三位数中,是9的倍数的数有( ) A.12个 B.18个 C.20个 D.30个 (“希望杯”邀请赛试题)7.五位数是9的倍数,其中是4的倍数,那么的最小值为多少? (黄冈市竞赛试题)8.1,2,3,4,5,6每个使用一次组成一个六位数字,使得三位数,,,能依次被4,5,3,11整除,求这个六位数. (上海市竞赛试题)9.173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9,11,6整除.”问:数学老师先后填入的这3个数字的和是多少? (“华罗庚金杯”邀请赛试题)B级1.若一个正整数被2,3,…,9这八个自然数除,所得的余数都为1,则的最小值为_________,的一般表达式为____________. (“希望杯”邀请赛试题)2.已知,都是正整数,若1≤≤≤30,且能被21整除,则满足条件的数对(,)共有___________个. (天津市竞赛试题)3.一个六位数能被33整除,这样的六位数中最大是__________.4.有以下两个数串同时出现在这两个数串中的数的个数共有( )个. A.333 B.334 C.335 D.3365.一个六位数能被12整除,这样的六位数共有( )个. A.4 B.6 C.8 D.126.若1 059,1 417,2 312分别被自然数除时,所得的余数都是,则-的值为( ). A.15 B.1 C.164 D.1747.有一种室内游戏,魔术师要求某参赛者相好一个三位数,然后,魔术师再要求他记下五个数:,,, ,,并把这五个数加起来求出和N.只要讲出的大小,魔术师就能说出原数是什么.如果N=3 194,请你确定. (美国数学邀请赛试题)8.一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“拷贝数”,试求所有的三位“拷贝数”. (武汉市竞赛试题)9.一个六位数,如将它的前三位数字与后三位数字整体互换位置,则所得的新六位数恰为原数的6倍,求这个三位数. (“五羊杯”竞赛试题)10.一个四位数,这个四位数与它的各位数字之和为1 999,求这个四位数,并说明理由. (重庆市竞赛试题)11.从1,2,…,9中任取个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求的最小值. (2013年全国初中数学竞赛试题)专题02 数的整除性例1 267 提示:333-66=267.例2 C 提示:关于②的证明:对于a,b若至少有一个是3的倍数,则ab是3的倍数.若a,b都不是3的倍数,则有:(1)当a=3m+1,b=3n+1时,a-b=3(m-n);(2)当a=3m+1,b=3n+2时,a+b=3(m+n+1);(3)当a=3m+2,b=3n+1时,a+b=3(m+n+1);(4)当a=3m+2,b=3n+2时,a-b=3(m-n).例3 a=8.b=0提示:由9|(19+a+b)得a+b=8或17;由11|(3+a-b)得a-b=8或-3.例4 设x,y,z,t是整数,并且假设5a+7b-22c=x(7a+2b+3c) +13(ya+zb+tc).比较上式a,b,c的系数,应当有,取x=-3,可以得到y=2,z=1,t=-1,则有13 (2a+b-c)-3(7a+2b+3c)=5a+7b-22c.既然3(7a+2b+3c)和13(2a+b-c)都能被13整除,则5a+7b-22c就能被13整除.例5 考虑到“魔术数”均为7的倍数,又a1,a2,…,an互不相等,不妨设a1 <a2<…<an,余数必为1,2,3,4,5,6,0,设ai=ki+t(i=1,2,3,…,n;t=0,1,2,3,4,5,6),至少有一个为m的“魔术数”,因为ai·10k+m(k是m的位数),是7的倍数,当i≤b时,而ai·t除以7的余数都是0,1,2,3,4,5,6中的6个;当i=7时,而ai·10k除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当i=7时,依抽屉原理,ai·10k与m二者余数的和至少有一个是7,此时ai·10k+m被7整除,即n=7.。

      点击阅读更多内容
      相关文档
      统编版(2024)新教材八年级道德与法治上册第三单元第七课每课时《追求自由平等》分层作业汇编(含两套作业).docx 人教版(2024)新教材八年级地理上册第二章第三节《河流与湖泊》同步练习(第2课时).docx 人教版(2024)新教材八年级地理上册第二章第二 节《气候》每课时同步练习汇编(含三套题).docx 人教版(2024)新教材八年级地理上册第一章第一节《疆域》素养分层评价(含两套题).docx 人教版(2024)新教材20252026学年度八年级地理上册期中测试卷及答案.doc Unit 3 Lesson 5 (同步练习) 2025-2026学年英语冀教版八年级上册.docx 外研版(2024)新教材八年级英语上册Unit 1 and Reflection 同步分层精练.docx 人教版(2024)新教材八年级英语上册Unit 4 Amazing Plants and Animals 人与自然(话题阅读精练).docx 人教版(2024)新教材八年级地理上册第一章第一节《疆域》同步练习(第1课时).docx 人教版(2024)新教材八年级地理上册期末复习专项素养提升卷(一)——自然环境要素及其相互影响.docx Unit 3 Better you better me(单元诊断)2025-2026学年英语冀教版八年级上册.docx 外研版(2024)新教材八年级英语上册Unit 1 Developing ideas(Listening and speaking)基础卷.docx 外研版(2024)新教材八年级英语上册Unit 1 This is me 单词短语句型语法(教材考点精练).docx 外研版(2024)新教材八年级英语上册Unit 1 This is me 单元测试卷及答案1.docx Unit 3 形容词和副词的原级和比较级(重点语法提升练)-2025-2026学年八年级英语上册.docx 人教版(2024)新教材八年级地理上册第二章第三节《河流与湖泊》同步练习(第3课时).docx 苏科版2024新教材九年级物理上册第十二章重难点训练:专项03 比热容和热值的相关计算(含答案).docx 苏科版2024新教材九年级物理上册第十二章重难点训练:四、机械能与内能的相互转化(含答案).docx 人教版(2024)新教材八年级地理上册第二章第一节《地形》每课时素养分层评价汇编(含两套题).docx 人教版(2024)新教材九年级物理全一册第十六章分层作业:第3节 电阻(含答案).docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.