九年级上册数学期末考试题(答案).doc
81页九年级上册数学期末考试题(答案)一、选择题(本题有10小题,每小题4分,共40分)1.反比例函数y=的图象在( )A.第一,二象限 B.第一,三象限 C.第二,四象限 D.第三,四象限2.下列剪纸作品中是中心对称图形的是( )A. B. C. D.3.将抛物线y=x2向上平移2个单位后,所得的抛物线的函数表达式为( )A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2 D.y=(x﹣2)24.下列说法中,正确的是( )A.不可能事件发生的概率为0 B.随机事件发生的概率为 C.“明天要降雨的概率为”,表示明天有半天时间都在降雨 D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次5.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点.如果∠AOB=130°,那么∠ACB的度数为( )A.65° B.115° C.130° D.65°或115°6.对于二次函数y=﹣2(x+1)(x﹣3),下列说法正确的是( )A.图象与x轴的交点为(1,0),(﹣3,0) B.图象的对称轴是直线x=﹣2 C.当x<1时,y随x的增大而增大 D.此函数有最小值为87.如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB=2,BC=4,则点C与其对应点C的距离为( )A.6 B.8 C.2 D.28.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是( )A.x(x﹣1)=21 B.x(x﹣1)=42 C.x(x+1)=21 D.x(x+1)=429.如图,在平面直角坐标系中,双曲线y=,y=﹣与⊙O相交,以交点为顶点的八边形ABCDEFGH是正八边形,则此正八边形的面积为( )A.32 B.64 C.16 D.16+1610.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E现有下列结论:①b2﹣4a<0;②b>0;③5a+b<0;④AD+CE=4.其中正确结论个数为( )A.4 B.3 C.2 D.1二、填空题(本题有6小题,每小题5分,共30分)11.(5分)点M(1,2)关于原点的对称点的坐标为 .12.(5分)小红在一次班会中参与学科知识抢答活动,现有语文题5个,数学题5个,英语题5个,她从中随机抽取1个,抽中数学题的概率是 .13.(5分)已知函数的图象经过点(1,3),且与x轴没有交点,写出一个满足题意的函数的解析式 .14.(5分)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD=1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为 寸.15.(5分)我县在治理违建的过程中,某小区拆除了自建房,改建绿地.如图,自建房占地是边长为20m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG=2BE.如果设BE的长为x(单位:m),绿地AEFG的面积为y(单位:m2),那么y与x的函数的解析式为 ,绿地AEFG的最大面积为 m2.16.(5分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,点B是弧AC的中点,若AC=7,BD=6,则由四个弓形组成的阴影部分的面积为 .三、解答题(本题有8小题,第17~20题毎题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解方程:(1)x2﹣9=0(2)x2+8x﹣20=018.(8分)在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为16cm的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.19.(8分)如图,在平面直角坐标系xOy中,直线y=x+1与双曲线y=的一个交点为P(m,2).(1)求k的值;(2)M(2,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.20.(8分)如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′= °,∠ACB′= °.(2)求证:BC′∥CB′.21.(10分)转转盘和摸球是等可能概率下的经典模型.(1)在一个不透明的口袋中,放入除颜色外其余都相同的4个小球,其中1个白球,3个黑球搅匀后,随机同时摸出2个球,求摸出两个都是黑球的概率(要求釆用树状图或列表法求解);(2)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针2次都落在黑色区域的概率(要求采用树状图或列表法求解).22.(12分)关于x的方程mx2﹣x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不相等的实数解;③无论m取何值,方程都有一个整数根.(1)请你判断,这三个结论中正确的有 (填序号)(2)证明(1)中你认为正确的结论.23.(12分)如图,▱ABCD的对角线AC、BD相交于点M,点M在以AB为直径的⊙O上,AD与⊙O相交于点E,连接ME.(1)求证:ME=MD;(2)当∠DAB=30°时,判断直线CD与⊙O的位置关系,并说明理由.24.(14分)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,记作Zp,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(3,1)的“坐标差”为 ;②抛物线y=﹣x2+5x的“特征值”为 ;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m= ;(用含c的式子表示)②求此二次函数的表达式.(3)如图,在平面直角坐标系xOy中,点D(4,0),以OD为直径作⊙M,直线y=x+b与⊙M相交于点E、F.①比较点E、F的“坐标差”ZE、ZF的大小.②请直接写出⊙M的“特征值”为 .参考答案一、选择题1.反比例函数y=的图象在( )A.第一,二象限 B.第一,三象限 C.第二,四象限 D.第三,四象限【分析】利用反比例函数的性质解答.【解答】解:∵k>0,∴反比例函数图象在第一、三象限.故选:B.【点评】本题主要考查当k>0时,反比例函数图象位于第一、三象限.2.下列剪纸作品中是中心对称图形的是( )A. B. C. D.【分析】根据中心对称图形的特征逐项判断即可.【解答】解:∵A中的图形不是中心对称图形,∴选项A不正确; ∵B中的图形不是中心对称图形,∴选项B不正确; ∵C中的图形是中心对称图形,∴选项C正确; ∵D中的图形不是中心对称图形,∴选项D不正确.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,解答此题的关键是要明确:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.将抛物线y=x2向上平移2个单位后,所得的抛物线的函数表达式为( )A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2 D.y=(x﹣2)2【分析】求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出即可.【解答】解:∵抛物线y=x2向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为y=x2+2.故选:A.【点评】本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.4.下列说法中,正确的是( )A.不可能事件发生的概率为0 B.随机事件发生的概率为 C.“明天要降雨的概率为”,表示明天有半天时间都在降雨 D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【分析】直接利用概率的意义分别分析得出答案.【解答】解:A、不可能事件发生的概率为0,正确;B、随机事件发生的概率为:0<P<1,故此选项错误;C、“明天要降雨的概率为”,表示明天有50%的可能降雨,故此选项错误;D、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误.故选:A.【点评】此题主要考查了概率的意义,正确掌握概率的意义是解题关键.5.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点.如果∠AOB=130°,那么∠ACB的度数为( )A.65° B.115° C.130° D.65°或115°【分析】根据点C在优弧AB上和劣弧AB上两种情况画出图形,根据圆周角定理和圆内接四边形的性质进行计算即可.【解答】解:如图1,∠ACB=∠AOB=65°;如图2,∠ADB=∠AOB=65°,∵∠ADB+∠ACB=180°,∴∠ACB=115°.综上∠ACB的度数为为65°或115°,故选:D.【点评】本题考查的是圆周角定理和圆内接四边形的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.对于二次函数y=﹣2(x+1)(x﹣3),下列说法正确的是( )A.图象与x轴的交点为(1,0),(﹣3,0) B.图象的对称轴是直线x=﹣2 C.当x<1时,y随x的增大而增大 D.此函数有最小值为8【分析】根据二次函数的性质,及对称轴,开口方向,即可判断.【解答】解:A、对于二次函数y=﹣2(x+1)(x﹣3),图象与x轴的交点为(﹣1,0),(3,0),故本选项错误;B、y=﹣2(x+1)(x﹣3)=﹣2(x﹣1)2+8,则图象的对称轴是直线x=1,故本选项错误;C、因为二次函数y=﹣2(x+1)(x﹣3)的图象的开口方向向下,对称轴是直线x=1,所以当x<1时,y随x的增大而增大,故本选项正确;D、由于y=﹣2(x+1)(x﹣3)=﹣2(x﹣1)2+8,所以此函数有最大值为8,故本选项错误;故选:C.【点评】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.7.如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB=2,BC=4,则点C与其对应点C的距离为( )A.6 B.8 C.2 D.2【分析】连接AC、AC′,如图,先,AC=2,再利用旋转的性质得到∠CAC′=∠BAB′=90°,AC=AC′,则可判断△ACC′为等腰直角三角形,然后根据等腰直角三角形求CC′的长.【解答】解:连接AC、AC′,如图,∵四边形ABCD为矩形,∴∠DAB=∠ABC=90°,在Rt△ABC中。





