
七年级(上)第4周周末数学作业(I).doc
19页七年级(上)第4周周末数学作业(I) 一.选择题1.零上15℃记作+15℃,零下5℃可记作( )A.5 B.﹣5 C.5℃ D.﹣5℃2.绝对值最小的有理数是( )A.1 B.0 C.﹣1 D.不存在3.大于﹣4.5,小于0.5的整数共有( )个.A.6 B.5 C.4 D.34.下列各对数中互为相反数的是( )A.﹣(+3)和+(﹣3) B.﹣(﹣3)和+(﹣3) C.﹣(﹣3)和+|﹣3| D.+(﹣3)和﹣|﹣3|5.与数轴上的点一一对应的数是( )A.整数 B.有理数和无理数C.有理数 D.无理数6.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.﹣4 B.﹣2 C.0 D.47.已知|a|=a,|b|=﹣b,|a|>|b|,用数轴上的点来表示a、b,正确的是( )A. B.C. D.8.数轴上任取一条长度为xx的线段,此线段在数轴上最多能盖住的整数点的个数是( )A.2 015 B.2 016 C.2 017 D.2 018 二、填空题9.﹣9的相反数是 ,倒数是 .10.相反数等于本身的数是 ,相反数等于其绝对值的数是 .11.绝对值不大于4的负整数有 个,它们是 .12.用“>”或“<”填空:﹣(﹣3) ﹣3,﹣π ﹣3.14,﹣(﹣4) ﹣|﹣3|.13.数轴上A点表示的数是3,向左移动2个单位再向右移动4个单位到B点,则B点表示的数是 ,从B点再向右移动3个单位到C点,则C点表示的数是 .14.如图,数轴上的点P表示的数是﹣1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是 .15.若x=﹣5,则﹣x= ;若|x|=|﹣7|,则x= .16.已知|x﹣3|+|y+4|=0,则x+y= .17.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则axx的值为 .18.计算:﹣1+2﹣3+4﹣5+6﹣…﹣99+100= .19.把下列各数分别填在相应的集合里:﹣1,20%,,0.3,0,3.14,﹣1.7,21,﹣2,1.01001 …,+6,π(1)正数集合{ …}(2)负数集合{ …}(3)非负整数集合{ …}(4)分数集合{ …}(5)有理数集合{ …}(6)无理数集合{ …}. 三、解答题20.计算:(1)3﹣4+7﹣28(2)(﹣)+(﹣)+(+)+(﹣)(3)(﹣19)×15(简便运算)(4)(+2)+(﹣11)(5)3+(﹣1)+(﹣3)+1+(﹣4)(6)﹣3.5×(﹣)×(7)|﹣2|﹣(﹣25)﹣|1﹣4|(8)(﹣+)×(﹣36).21.已知|a|=2,b的相反数为﹣5,试求a+(﹣b).22.规定一种新的运算:A★B=A×B﹣A﹣B+1,如3★4=3×4﹣3﹣4+1=6.请比较(﹣3)★4与2★(﹣5)的大小.23.如图,两个圈分别表示负数集和分数集,请将3,0,,﹣3,﹣5,﹣3.4中符合条件的数填入圈中.24.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在B处,规定向东方向为负,当天行驶纪录如下(单位:千米)﹣1,+12,﹣11,+9,﹣13,+7,﹣12,+5,﹣4(1)B在岗亭何方?距岗亭多远?(2)当天晚上因为岗亭有事需要回去,若摩托车行驶1千米耗油0.6升,这一天共耗油多少升?25.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 .②数轴上表示x和﹣2的两点之间的距离表示为 .③若x表示一个有理数,且﹣3<x<1,则|x﹣1|+|x+3|= ④若x表示一个有理数,且|x﹣1|+|x+3|>4,则有理数x的取值范围是 . 四、思考题:26.如果有理数a,b满足|a﹣2|+|1﹣b|=0(1)求a,b 的值;(2)运用题(1)中的a,b的值阅读理解:∵=,, =﹣,…∴计算:…=…=1=理解以上方法的真正含义:试求的值. xx学年江苏省无锡市江阴市南闸实验学校七年级(上)第4周周末数学作业参考答案与试题解析 一.选择题1.零上15℃记作+15℃,零下5℃可记作( )A.5 B.﹣5 C.5℃ D.﹣5℃【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵零上15℃记作+15℃,∴零下5℃可记作﹣5℃.故选D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.绝对值最小的有理数是( )A.1 B.0 C.﹣1 D.不存在【考点】绝对值.【分析】根据绝对值的定义,绝对值就是到原点的距离,距离为0最小.【解答】解:正数的绝对值是正数;负数的绝对值是正数;0的绝对值是0,正数大于0,所以绝对值最小的数是0.故选:B.【点评】本题考查绝对值问题,需掌握的知识点是:绝对值最小的数是0. 3.大于﹣4.5,小于0.5的整数共有( )个.A.6 B.5 C.4 D.3【考点】有理数大小比较.【分析】根据实数的大小可知,大于﹣4.5而小于0.5的整数分别是﹣4,﹣3,﹣2,﹣1,0即可解答.【解答】解:大于﹣4.5,小于0.5的整数有﹣4,﹣3,﹣2,﹣1,0,共有5个.故选B.【点评】此题考查了有理数的大小比较,根掌握正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小是解题的关键. 4.下列各对数中互为相反数的是( )A.﹣(+3)和+(﹣3) B.﹣(﹣3)和+(﹣3) C.﹣(﹣3)和+|﹣3| D.+(﹣3)和﹣|﹣3|【考点】相反数.【分析】先化简,再根据相反数的定义判断即可.【解答】解:A、∵﹣(+3)=﹣3,+(﹣3)=﹣3,∴﹣(+3)和+(﹣3)不是互为相反数,选项错误;B、∵﹣(﹣3)=3,+(﹣3)=﹣3,∴﹣(﹣3)和+(﹣3)互为相反数,选项正确;C、∵﹣(﹣3)=3,+|﹣3|=3,∴﹣(﹣3)与+|﹣3|不是互为相反数,选项错误;D、∵+(﹣3)=﹣3,﹣|﹣3|=﹣3,∴+(﹣3)与﹣|﹣3|不是互为相反数,选项错误;故选B.【点评】本题考查相反数的知识,属于基础题,比较简单,关键是熟练掌握相反数这一概念. 5.与数轴上的点一一对应的数是( )A.整数 B.有理数和无理数C.有理数 D.无理数【考点】实数与数轴.【专题】存在型.【分析】先根据“实数与数轴上的点是一一对应的”得出此结论必为实数,再根据实数分有理数和无理数进行解答即可.【解答】解:∵实数与数轴上的点是一一对应的,∴与数轴上的点一一对应的数是实数,∵实数分有理数和无理数,∴与数轴上的点一一对应的数是有理数和无理数.故选B.【点评】本题考查的是实数与数轴及实数的分类,解答此题的关键是熟知“实数与数轴上的点是一一对应的”这一知识点. 6.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.﹣4 B.﹣2 C.0 D.4【考点】绝对值;数轴.【专题】计算题.【分析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.【解答】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.【点评】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键. 7.已知|a|=a,|b|=﹣b,|a|>|b|,用数轴上的点来表示a、b,正确的是( )A. B. C. D.【考点】绝对值;数轴.【专题】推理填空题.【分析】首先根据|a|=a,|b|=﹣b,可得a≥0,b≤0,然后根据|a|>|b|,可得a>﹣b,据此判断出用数轴上的点来表示a、b,正确的是哪个图形即可.【解答】解:∵|a|=a,|b|=﹣b,∴a≥0,b≤0,∵|a|>|b|,∴a>﹣b..故选:C.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零. 8.数轴上任取一条长度为xx的线段,此线段在数轴上最多能盖住的整数点的个数是( )A.2 015 B.2 016 C.2 017 D.2 018【考点】数轴.【分析】此题应考虑线段的端点正好在两个整数点上和两个端点都不在整数点上两种情况.【解答】解:依题意得:①当线段起点在整点时覆盖xx+1=xx个数,②当线段AB起点不在整点,即在两个整点之间时覆盖xx个数,∴最多能盖住的整数点的个数是xx,故选C【点评】本题考查了数轴,在学习中要注意培养学生数形结合的思想,本题画出数轴解题非常直观,且不容易遗漏,体现了数形结合的思想. 二、填空题9.﹣9的相反数是 9 ,倒数是 ﹣ .【考点】倒数;相反数.【分析】根据只有符号不同的两个数叫做互为相反数和倒数的定义解答.【解答】解:﹣9的相反数是9,倒数是﹣.故答案为:9;﹣.【点评】本题考查了倒数和相反数的定义,是基础题,熟记概念是解题的关键. 10.相反数等于本身的数是 0 ,相反数等于其绝对值的数是 0、﹣1 .【考点】绝对值;相反数.【专题】推理填空题.【分析】根据相反数的含义和求法,以及绝对值的含义和求法,逐项判断即可.【解答】解:相反数等于本身的数是0,相反数等于其绝对值的数是0、﹣1.故答案为:0;0、﹣1.【点评】此题主要考查了相反数的含义和求法,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零. 11.绝对值不大于4的负整数有 4 个,它们是 ﹣4、﹣3、﹣2、﹣1 .【考点】有理数大小比较;绝对值.【分析】根据绝对值的定义可得.【解答】解:绝对值不大于4的负整数有4个,它们是﹣4、﹣3、﹣2、﹣1,故答案为:4,﹣4、﹣3、﹣2、﹣1.【点评】本题主要考查绝对值,熟练掌握绝对值的定义是解题的关键. 12.用“>”或“<”填空:﹣(﹣3) > ﹣3,﹣π < ﹣3.14,﹣(﹣4) > ﹣|﹣3|.【考点】实数大小比较.【分析】先化简,根据正数大于负数,两个负数绝对值大的反而小,即可解答.【解答】解:∵﹣(﹣3)=3,3>﹣3,∴﹣(﹣3)>﹣3;∵π>3.14,∴﹣π<﹣3.14,∵﹣(﹣4)=4,﹣|﹣3|=﹣3,4>﹣3,∴﹣(﹣4)>﹣|﹣3|,故答案为:>;<;>.【点评】本题考查了实数比较大小,解决本题的关键是熟记正数大于负数,两个负数绝对值大的反而小. 13.数轴上A点表示的数是3,向左移动2个单位再向右移动4个单位。
