必要的锅炉密封分析.doc
2页一:技术上的必要性(一般电站锅炉存在的问题及大容量锅炉本体密封缺陷及其实例研究)1. 锅炉本体不同金属构件管材不同导致其相对膨胀量不同产生漏风漏灰:由各大锅炉厂的《锅炉说明书》可知,现在大容量锅炉一般采用大罩壳保温,且顶棚采用鳍片管所以在其上不铺设浇灌保温材料,而只是在炉顶管分段鳍片处、穿墙管等处浇灌耐火可塑料而耐火可塑料上面就是内护板因为考虑到内护板要受高温烟气的直接冲刷,所以一般采用低合金耐热钢(12Cr1MoV,15CrMo等)以保证其抗冲刷性能,但其膨胀量达到7.44mm/m,横贯炉宽的绝对膨胀量应在100mm左右,与它相接的穿墙管的最小膨胀量仅为3.33mm/m,可见相对膨胀量差别之大2. 锅炉本体尺寸过大,导致锅炉本体的绝对膨胀量过大产生漏风漏灰:从锅炉设计尺寸可知,现有锅炉的纵向尺寸较大以300MW锅炉为例,从顶棚前集箱至尾包墙的长度26米多由此可知顶棚管的绝对膨胀量将达到120mm,以炉顶存在假设膨胀死点计算,其两侧的绝对膨胀量也将达到60mm以上由此可以看出其纵向膨胀量是最大的相应的顶棚管与两侧墙部位的密封必然是一大难点现在大容量锅炉炉顶顶棚管为鳍片管焊接的膜式壁,并在炉墙层中设置了内护板和膨胀节;而在炉顶四周与水冷壁、包墙管的交界处和穿过顶棚管段的部位无法形成膜式壁,则是采用特殊的密封块、密封板和梳型板与内护板相互焊接的一次全密封结构。
但是由于锅炉炉顶的膨胀中心不明确、受热面本身结构的限制和工地现场安装管子不可避免得误差等原因,造成个别管排之间的内护板难以铺设和焊接这些密封件在长期热力工况下也会被拉裂和烧损而各厂锅炉的此部位也是泄漏严重的部位之一3. 现有穿墙管金属密封方式不能有效地调整膨胀产生漏风漏灰:出于施工设计及安装等考虑,穿墙管密封盒是横贯炉宽的,长度往往超过12米以上,且不同穿墙管系的密封盒之间间距很小,不足以吸收由于大面积满焊密封盒而产生的焊接应力据我们调查发现,往往是每隔7-10米处会有泄漏积灰严重的情况出现,而且拉裂处以高过、高再密封盒为多4. 正常运行时炉顶经常处于正压状态产生漏风漏灰:大型锅炉一般采用平衡通风,即锅炉配有送、引风机运行中送、引风机均开启,炉膛内压力按锅炉运行规程要求保持在-(20~30)Pa运行但国内各型锅炉(包括进口炉型)炉膛内负压测点一般较低,位于大屏过热器或分割屏过热器下部10米左右,则越往炉膛上部,负压越低到炉膛顶部时,正常运行工况下一般保持正压在70~80Pa左右这是因为大气压力沿大气层高度不同而不同,海拔高度越高大气压力越低,在低海拔地区,海拔高度每增高1米,大气压力降低约12Pa,按这一数字,若炉膛负压测点低于炉顶10米时,炉顶大气压力将低于炉膛负压测点处的大气压力约120Pa,故炉顶炉内实际是处于正压状态,这也是导致炉膛漏风漏灰的重要原因。
5. 现有锅炉金属密封结构安装过于复杂产生漏风漏灰:由于锅炉现场安装施工中所牵连的因素过多,比如各穿墙管走向因素,工期因素等等所以《锅炉说明书》中也往往只提供密封方面的原则性说明,具体工地上施工只是按照设计细想和安装经验适当加以密封因此这是产生密封失效的安装原因6. 现有密封保温材料不足以吸收锅炉的膨胀产生漏风漏灰:如耐火可塑料等硬性材料的膨胀量过小,只能作为耐火层而不能吸收膨胀炉顶整体密封面积过大,当密封钢板有露焊点等穿孔缺陷或隔热耐火混凝土有损坏时,高温烟气流将进入密封板下窜行,很快就会使密封板受热变形而损坏,造成炉顶漏烟而且有些锅炉顶棚管后部为散管结构,与其相接的侧包墙及尾部包墙也为散管结构,管间间隙施工难度大,难以保证耐火层的浇铸质量锅炉投运后,只要顶棚管受热膨胀不均匀,就会产生间隙大小不均,导致耐火层的损坏脱落,进而使高温烟气直接冲刷密封钢板7. 其他技术原因产生漏风漏灰:此外还有诸如一、二次密封处理不当;大型锅炉烟风通道的结构设计缺陷;电厂燃用煤种与设计煤种不同;锅炉运行时由于喷燃器燃烧方式形成的烟风走廊等原因都是造成锅炉泄漏的因素,此处不再详述下面举具体实例以证明 二:锅炉运行安全上的必要性分析(漏风漏灰对运行安全性的危害):1. 漏风漏灰严重磨损金属受热面:研究发现,承压管道在漏风漏灰部位,时常发生管壁变薄甚至爆管现象,专家认为这是漏风漏灰造成的结果。
在发生锅炉漏风漏灰时,由于锅炉内外压力差,在漏风处形成涡流,加速了炉灰中颗粒物对管壁的冲刷磨损作用,长此以往,该处由于炉灰中颗粒物冲击摩擦,管壁厚度减小,造成应力集中,可能导致严重的爆管,造成电厂被迫停产的事故同时随着锅炉本体泄漏的增加,其炉内的烟风量也大于设计值,导致其风速增加,且由于泄漏点的不同,产生炉内流场压力不均,烟风流量偏差加大等,以上因素都直接间接恶化炉内工况条件,导致管壁磨损严重2. 漏风漏灰对锅炉辅机安全造成危害:主要是引风机,当锅炉发生漏风漏灰时,降低了炉膛及换热面的热负荷,为了保证锅炉出力,必须增加煤粉的投入量,此举相应加大了炉膛烟道中的风粉量,增加了风速,加大了对引风机叶片的磨损现在各厂大小修中常有的叶轮磨损堆焊等项目说明了其危害的严重性3. 漏风漏灰严重腐蚀金属构件:灰中含有的有害成分(S、P、N)等元素会对金属构件,特别是对承压部件起腐蚀作用,尤其当电厂处于较为潮湿的区域时而造成的酸性腐蚀作用尤为严重此外漏出来的高温烟气往往会将热量传给泄漏通道附近的锅炉附件:管道、联箱、热工表线,造成烧损、腐蚀危及生产安全,严重威胁着锅炉的正常运行而当烟气流量增加时,其烟气的总含硫量必然增加,而含硫量的增加将导致酸露点的升高,将加大尾部受热面的腐蚀。
例如大同一电厂经常由于尾部受热面的酸腐蚀造成空预器堵灰现象,导致该厂每隔2至3个月就要组织人工清灰,非常费力费时4. 漏风漏灰增加锅炉本体荷重:炉顶大量积灰时,积灰量可达到200甚至300吨以上,相当于炉顶全部钢结构密封层的重量,大大增加了锅炉炉顶承重量及顶棚管的承重负荷,严重时会导致炉顶变形,对锅炉本体的安全运行造成极大的危害三:机组运行经济上的必要性(漏风漏灰对运行经济性的危害):1. 漏风漏灰降低锅炉热效率:一是漏风会导致烟气所带热量散失或降低烟气温度,导致各受热面换热不足,直接导致排烟温度上升此外,要维持额定蒸发量的话必须多投煤粉,增加了烟气流量,导致烟气量大量增加而锅炉引风机电耗约占厂用电的15%左右根据各科研院所的研究及各实际电厂试验考核:0.1(10%)漏风系数对应7.5℃排烟温度的升高,对应着约0.7%的热效率的降低,对应10-15A左右引风机电机电流的增加2. 漏风漏灰制约锅炉出力:当密封结构发生大规模泄漏时,外界空气会大量进入或内部烟气大量漏出炉膛烟风系统二者都一则影响炉膛内的负压工况,二则势必会大大增加引风机电耗和磨损,进而强迫锅炉机组降负荷运行3. 漏风漏灰增加锅炉散热损失:炉顶大量漏灰会使炉顶保温层破坏,导致炉顶严重超温,有些电厂因炉顶泄漏问题而导致保温层表面温度甚至达到了200多摄氏度,大大增加了锅炉散热损失。





