奥数题高难度.doc
13页1.图形:(高等难度) 如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.图形答案:2. 图形面积:(高等难度) 直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(与梯形BTFG)的总面积等于多少?应用题:(高等难度) 3. 我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元 应用题答案:4. 乒乓球训练(逻辑):(高等难度) 甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______. 乒乓球训练(逻辑)答案: 本题是一道逻辑推理要求较高的试题.首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的.那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数. ⑴丙当了5局裁判,则甲乙进行了5局; ⑵甲一共打了15局,则甲丙之间进行了15-5=10局; ⑶乙一共打了21局,则乙丙之间进行了21-5=16局; 所以一共打的比赛是5+10+6=31局. 此时根据已知条件无法求得第三局的裁判.但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对手搭配,就是说不可能出现上一局是甲乙,接下来的一局还是甲乙的情况,必然被别的对阵隔开.而总共31局比赛中,乙丙就进行了16局,剩下的甲乙、甲丙共进行了15局,所以类似于植树问题,一定是开始和结尾的两局都是乙丙,中间被甲乙、甲丙隔开.所以可以知道第奇数局(第1、3、5、……局)的比赛是在乙丙之间进行的.那么,第三局的裁判应该是甲.5. 奇偶性应用:(高等难度) 在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色奇偶性应用答案: 假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色.设第一次染m个珠子为红色,第二次必然还仅染这m个珠子为红色.则染红色次数为2m次。
∵2m≠1987(偶数≠奇数) ∴假设不成立 ∴至少有一个珠子被染上红、蓝两种颜色6. 整除问题:(高等难度) 一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数整除问题答案: 这是一道古算题.它早在《孙子算经》中记有:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?" 关于这道题的解法,在明朝就流传着一首解题之歌:"三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知."意思是,用除以3的余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去 105,直至小于105为止.这样就可以得到满足条件的解.其解法如下: 方法1:2×70+3×21+2×15=233 233-105×2=23 符合条件的最小自然数是237. 平均数:(高等难度) 有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数.那么这18个数的平均数是:_______.平均数答案:8. 追击问题:(高等难度) 如下图,甲从A出发,不断往返于AB之间行走。
乙从C出发,沿C—E—F—D—C围绕矩形不断行走甲的速度是5米/秒,乙的速度是4米/秒,甲从背后第一次追上乙的地点离D点____________米 追击问题答案:9. 正方形:(高等难度) 如图所示,ABCD是一边长为4cm的正方形,E是AD的中点,而F是BC的中点以C为圆心、半径为4cm的四分之一圆的圆弧交EF于G,以F为圆心、半径为2cm的四分之一圆的圆弧交EF于H点,正方形答案:10. 求面积:(高等难度) 下图中,ABCD是边长为1的正方形,A,E,F,G,H分别是四条边AB,BC,CD,DA的中点,计算图中红色八边形的面积求面积答案: 至此,我们对各部分的面积都已计算出来,如下图所示. 【又解】设O为正方形中心(对角线交点),连接OE、OF,分别与AF、BG交于M、N,设AF与EC的交点为P,连接OP,△MOF的面积为正方形面积的,N为OF中点,△OPN面积等于△FPN面积,又△OPN面积与△OPM面积相等,所以△OPN面积为△MOF面积的,为正方形面积的,八边形面积等于△OPM面积的8倍,为正方形面积的.11. 阴影面积:(高等难度) 如右图,在以AB为直径的半圆上取一点C,分别以AC和BC为直径在△ABC外作半圆AEC和BFC.当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最大。
阴影面积答案:12. 得奖人数:(高等难度) 六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?得奖人数答案: 解答:设获奖人数为x,则 所以x=111(人)13. 竞赛:(高等难度) 光明小学六年级选出的男生的1/11和12名女生参加数学竞赛,剩下的男生人数是剩下的女生人数的2倍.已知六年级共有156人,问男、女生各有多少人?竞赛答案: ②女生人数:156-99=57(人).14. 粮食问题:(高等难度) 甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?粮食问题答案: ①甲仓有粮:(80+120)÷(1+60%)=125(吨). ②从乙仓调入甲仓粮食:125-80=45(吨). 出三个正方形的边长是成比例缩小的,即为一个等比数列,而这个比就要用到相似三角形的知识点这在以前讲沙漏原理或者三角形等积变形等专题的时候提到过可以说是一道难度比较大的题当然对于这种有特点.15. 分苹果:(高等难度) 有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?分苹果答案: 第01题 阿基米德分牛问题太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成. 在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7. 在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数 是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7. 问这牛群是怎样组成的?第02题 德·梅齐里亚克的法码问题一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物. 问这4块砝码碎片各重多少?第03题 牛顿的草地与母牛问题a头母牛将b块地上的牧草在c天内吃完了; a'头母牛将b'块地上的牧草在c'天内吃完了; a"头母牛将b"块地上的牧草在c"天内吃完了; 求出从a到c"9个数量之间的关系?第04题 贝韦克的七个7的问题在下面除法例题中,被除数被除数除尽: * * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题 柯克曼的女学生问题 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每 个女生同其他每个女生同一行中散步,并恰好每周一次?第06题 伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题 欧拉关于多边形的剖分问题Euler's Problem of Polygon Division 可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题 鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couples n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的 妻子并坐,问有多少种坐法?第09题 卡亚姆的二项展开式Omar Khayyam's Binomial Expansion 当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂. 第10题 柯西的平均值定理Cauchy's Mean Theorem 求证n个正数的几何平均值不大于这些数的算术平均值.第11题 伯努利幂之和的问题Bernoulli's Power Sum Problem 确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+口口.第12题 欧拉数The Euler Number 求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值.第13题 牛顿指数级数Newton's Exponential Series 将指数函数ex变换成各项为x的幂的级数.第14题 麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series 不用对数表,计算一个给定数的对数.第15题 牛顿正弦及余弦级数Newton's Sine and Cosine Series 不用查表计算已知角的正弦及余弦三角函数.第16题 正割与正切级数的安德烈推导法Andre Derivation of the Secant and Tangent Series 在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列. 试利用屈折排列推导正割与正切的级数.第17题 格雷戈里的反正切级数Gregory's Arc Tangent Series 。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


