第2讲 填空题的解法技巧题型概述 填空题是一种只要求写出结论,不要求解答过程的客观性试题,有小巧灵活、覆盖面广、跨度大等特点,突出考查准确、严谨、灵活运用知识的能力.由于填空题不像选择题那样有备选提示,不像解答题那样有步骤得分,所填结果必须准确、规范,因此得分率较低,解答填空题的第一要求是“准”,然后才是“快”、“巧”,要合理灵活地运用恰当的方法,不可“小题大做”.方法一 直接法直接法就是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的方法解决问题.直接法是求解填空题的基本方法.例1 (1)已知函数f(x)=若f(a)=3,则a=________.(2)(2015·北京)在△ABC中,a=4,b=5,c=6,则=________.解析 (1)∵a≥1时,f(a)≤1,不适合.∴f(a)=log2(1-a)+1=3,∴a=-3.(2)由余弦定理:cos A===,∴sin A=,cos C===,∴sin C=,∴==1.答案 (1)-3 (2)1思维升华 利用直接法求解填空题要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.跟踪演练1 (1)已知F为双曲线C:-=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)段PQ上,则△PQF的周长为________.(2)(2015·安徽)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于________.答案 (1)44 (2)2n-1解析 (1)由题意,得|PQ|=16,线段PQ过双曲线的右焦点,则P,Q都在双曲线的右支上.由双曲线的定义,可知|PF|-|PA|=2a,|QF|-|QA|=2a,两式相加,得,|PF|+|QF|-(|PA|+|QA|)=4a,则|PF|+|QF|=4a+|PQ|=4×3+16=28,故△PQF的周长为44.(2)由等比数列性质知a2a3=a1a4,又a2a3=8,a1+a4=9,∴联立方程解得或又数列{an}为递增数列,∴a1=1,a4=8,从而a1q3=8,∴q=2.∴数列{an}的前n项和为Sn==2n-1.方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(特殊函数,特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程.例2 (1)cos2α+cos2(α+120°)+cos2(α+240°)的值为________.(2)如图,在三棱锥O—ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为________.解析 (1)令α=0°,则原式=cos20°+cos2120°+cos2240°=.(2)要满足各个截面使分得的两个三棱锥体积相等,则需满足与截面对应的交点E,F,G分别为中点即可.故可以将三条棱长分别取为OA=6,OB=4,OC=2,如图,则可计算S1=3,S2=2,S3=,故S30)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.答案 (1)4 (2)-8解析 (1)用特例法.令锐角三角形ABC为等腰三角形,此时cos C=.不妨设a=b=3(如图),作AD⊥BC垂足为D,所以CD=1,AD=2,所以tan C=2,tan A=tan B=,所以+=4.(2)根据函数特点取f(x)=sinx,再由图象可得(x1+x2)+(x3+x4)=(-6×2)+(2×2)=-8.方法三 数形结合法对于一些含有几何背景的填空题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等,求解的关键是明确几何含义,准确规范地作出相应的图形.例3 (1)已知点P(x,y)的坐标x,y满足则x2+y2-6x+9的取值范围是________________________________________________________________________.(2)已知函数f(x)=log2x,g(x)=若关于x的方程g(x)=k有两个不相等的实数根,则实数k的取值范围是________.解析 (1)画出可行域如图,所求的x2+y2-6x+9=(x-3)2+y2是点Q(3,0)到可行域上的点的距离的平方,由图形知最小值为Q到射线x-y-1=0(x≥0)的距离d的平方,∴d=()2=()2=2.最大值为点Q到点A的距离的平方,∴d=16.∴取值范围是[2,16].(2)画出函数y=g(x)的图象(如图).由图知,当函数y=g(x)和y=k的图象有两个交点时,k>1.答案 (1)[2,16] (2)(1,+∞)思维升华 数形结合法可直观快捷地得到问题的结论,充分应用了图形的直观性,数中思形,以形助数.数形结合法是高考的热点,应用时要准确把握各种数式和几何图形中变量之间的关系.跟踪演练3 (1)(2015·湖南)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.(2)若函数y=f(x)图象上不同两点M、N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=则此函数的“和谐点对”有________对.答案 (1)(0,2) (2)2解析 (1)将函数f(x)=|2x-2|-b的零点个数问题转化为函数y=|2x-2|的图象与直线y=b的交点个数问题,数形结合求解.由f(x)=|2x-2|-b=0,得|2x-2|=b.在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示.则当01,f(0)=4,则不等式f(x)>+1(e为自然对数的底数)的解集为________.解析 (1)如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以CD==2R,所以R=,故球O的体积V==π.(2)由f(x)>+1得,exf(x)>3+ex,构造函数F(x)=exf(x)-ex-3,对F(x)求导得F′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1].由f(x)+f′(x)>1,ex>0,可知F′(x)>0,即F(x)在R上单调递增,又因为F(0)=e0f(0)-e0-3=f(0)-4=0,所以F(x)>0的解集为(0,+∞).答案 (1)π (2)(0,+∞)思维升华 构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,一般通过构造新的函数、不等式或数列等新的模型将问题转化为自己熟悉的问题.在立体几何中,补形构造是最为常用的解题技巧.通过补形能将一般几何体的有关问题在特殊的几何体中求解,如将三棱锥补成特殊的长方体等.跟踪演练4 (1),,(其中e为自然对数的底数)的大小关系是________.(2)已知三个互不重合的平面α、β、γ,α∩β=m,n⊂γ,且直线m、n不重合,由下列三个条件:①m∥γ,n⊂β;②m∥γ,n∥β;③m⊂γ,n∥β.能推得m∥n的条件是________.答案 (1)<< (2)①③解析 (1)由于=,=,=,故可构造函数f(x)=,于是f(4)=,f(5)=,f(6)=.而f′(x)=()′==,令f′(x)>0得x<0或x>2,即函数f(x)在(2,+∞)上单调递增,因此有f(4)