二元一次方程组的应用13种类型.doc
15页二元一次方程组的应用 要点突破:应用二元一次方程组解决实际问题的基本步骤回顾: 关键 (1)理解问题 (审题,搞清已知和未知,分析数量关系)(2)制定计划 (考虑如何根据等量关系设元,列出方程组)(3)执行计划 (列出方程组并求解,得到答案)(4)回顾 (检查和反思解题过程,检验答案的正确性以及是否符合题意)列方程组思想: 找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;(12)优化方案问题.一、 行程问题三个基本量的关系: 路程s=速度v×时间t 时间t=路程s÷速度V 速度V=路程s÷时间t三大类型:① 相遇问题:快行距+慢行距=原距② 追及问题:快行距-慢行距=原距③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程相遇问题: 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程 A车路程B车路程 A车路程+B车路程=相距路程 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度 甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇相遇时二人各行了多少米追及问题:两物体速度不同向同一方向运动,两物体同时运动,一个在前,一个在后,前后相隔的路程若把它叫做“追及的路程”,那么,在后的追上前一个的时间叫“追及时间”.A车后行路程B车追击路程A车先行路程 追击关系式是: 追及的路程÷速度差=追及时间顺速–逆速 = 2水速;顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能追上乙车甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
二人的平均速度各是多少 解:设甲每小时走x千米,乙每小时走y千米 题中的两个相等关系:1、同向而行:甲的路程=乙的路程+ 可列方程为: 2、相向而行:甲的路程+ = 可列方程为: 【变式】1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米 2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分甲地到乙地全程是多少4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。
求通讯员到达某地的路程是多少千米和原定的时间为多少小时总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略 一只船在河中航行,水速为每小时2千米,它在静水中航行每小时8千米,顺水航行每小时行多少千米逆水航行每小时行多少千米顺水航行50千米需要用多少小时练习: 1.某船在静水中的速度是每小时7千米,水流速度是每小时2千米,那么它逆水中的速度是多少若逆水航行3小时,可航行多少千米某船顺水速度是每小时17千米,逆水航行速度是每小时10千米,那么此船的静水速度是每小时多少千米水流速度是每小时行多少千米两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度 二、 工程问题三个基本量的关系:工作总量=工作时间×工作效率; 工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间 甲的工作量+乙的工作量=甲乙合作的工作总量,注:当工作总量未给出具体数量时,常设总工作量为“1”一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少 总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。
变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由. 现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件某检测站要在规定时间内检测一批仪器,原计划每天检测30台这种仪器,则在规定时间内只能检测完总数的七分之三;现在每天实际检测40台,结果不但比原计划提前了一天完成任务,还可以多检测25台.问规定时间是多少天这批仪器共多少台3. 甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时甲先花了1小时修理工具,因此甲每小时比以前多加工10件,结果在后一段时间内,甲比乙多加工了10件,甲、乙两人原来每小时各加工多少件一项工程,甲单独做12天完成,乙队单独要做15天完成,丙队单独要20天完成,按计划要求在7天内完成,现在甲乙先合作若干天,丙队也同时加入这项工作,这样比原定时间提前一天完成任务甲乙两队合做了多少天丙队做了多少天甲乙两个车间原计划装车床180台,甲车间完成计划的112% ,乙车间完成了计划的110% ,这样共装机床200台,两车间各比计划多完成多少台.某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:销售方式直接销售粗加工后销售精加工后销售每吨获利(元)100250450现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:销售方式全部直接销售全部粗加工后销售尽量精加工,剩余部分直接销售获利(元)(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间 三:商品销售利润问题利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100% 有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元 【变式】1. 某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表: AB进价(元/件)12001000售价(元/件)13801200求该商场购进A、B两种商品各多少件; 一.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角3种包装的饮料每瓶各多少元捐款10153050人数1843. 2008年5月12日,四川省汶川县发生里氏级强烈地震,给当地人民造成巨大的损失.全国迅速组织捐款支援灾区,我校七年级(1)班55名同学共捐款830元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.甲乙两种商品的进价和是100元,为促销而打折出售,若甲商品打8折,乙商品打6折,可赚50元,若甲商品打6折,乙商品打8折可赚元,求甲乙两种商品原定价各是多少元5.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元6.有甲乙两种电饭锅原来的单价之和是200元,现因市场销售情况的变化,甲商品商品降价15%,乙商品单价提高了40%,调价后,两种电饭锅的单价和比原来的单价和提高了%。
甲乙两种商品原来的单价各是多少 四、银行储蓄问题银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率4.小明的妈妈为了准备小明一年后上高中的费用,现在。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


