
2025届福建省部分重点高中高三数学第一学期期末调研模拟试题含解析.doc
20页2025届福建省部分重点高中高三数学第一学期期末调研模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.若P是的充分不必要条件,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.关于函数,有下述三个结论:①函数的一个周期为;②函数在上单调递增;③函数的值域为.其中所有正确结论的编号是( )A.①② B.② C.②③ D.③3.已知的垂心为,且是的中点,则( )A.14 B.12 C.10 D.84.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )A. B. C. D.5.已知直线和平面,若,则“”是“”的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要6.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为( )A.0 B.2 C.4 D.17.已知函数,,,,则,,的大小关系为( )A. B. C. D.8.执行如图所示的程序框图,若输入的,则输出的( )A.9 B.31 C.15 D.639.设为虚数单位,复数,则实数的值是( )A.1 B.-1 C.0 D.210.已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )A. B. C. D.11.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.112.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.14.如图,在矩形中,,是的中点,将,分别沿折起,使得平面平面,平面平面,则所得几何体的外接球的体积为__________.15.集合,,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为________①的值可以为2;②的值可以为;③的值可以为;16.若向量满足,则实数的取值范围是____________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)18.(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,,19.(12分)已知直线的参数方程:(为参数)和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)已知点,直线与圆相交于、两点,求的值.20.(12分)如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.21.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.22.(10分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题2、C【解析】①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【详解】因为,故①错误;当时,,所以,所以在上单调递增,故②正确;函数的值域等价于函数的值域,易知,故当时,,故③正确.故选:C.【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.3、A【解析】由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而, 所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.4、C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,该几何体的表面积:.故选C.【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.5、B【解析】由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.6、C【解析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.7、B【解析】可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.8、B【解析】根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.9、A【解析】根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.10、A【解析】函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.【点睛】本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.11、B【解析】根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.12、D【解析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.二、填空题:本题共4小题,每小题5分,共20分。
13、【解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数。












