好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

无机材料科学基础 第7章 扩散与固相反应.doc

13页
  • 卖家[上传人]:公****
  • 文档编号:480310920
  • 上传时间:2024-02-05
  • 文档格式:DOC
  • 文档大小:58.51KB
  • / 13 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第七章 扩散与固相反应 §7-1 晶体中扩散的基本特点与宏观动力学方程 一、基本特点1、固体中明显的质点扩散常开始于较高的温度,但实际上又往往低于固体的熔点;2、晶体中质点扩散往往具有各向异性,扩散速率远低于流体中的情况二、扩散动力学方程1、稳定扩散和不稳定扩散在晶体A中如果存在一组分B的浓度差,则该组分将沿着浓度减少的方向扩散,晶体A作为扩散介质存在,而组分B则为扩散物质如图,图中dx为扩散介质中垂直于扩散方向x的一薄层,在dx两侧,扩散物质的浓度分别为c1和c2,且c1>c2,扩散物质在扩散介质中浓度分布位置是x的函数,扩散物质将在浓度梯度的推动下沿x方向扩散的浓度分布不随时间变的扩散过程稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0这种扩散称稳定扩散不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0这种扩散称为不稳定扩散2、菲克定律(1)菲克第一定律在扩散体系中,参与扩散质点的浓度因位置而异,且随时间而变化,即浓度是坐标x、y、z和时间t函数,在扩散过程中,单位时间内通过单位横截面积的质点数目(或称扩散流量密度)j之比于扩散质点的浓度梯度△c D:扩散系数;其量纲为L2T-1,单位m2/s。

      负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散,对于一般非立方对称结构晶体,扩散系数D为二阶张量,上式可写为: 对于大部分的玻璃或各向同性的多晶陶瓷材料,可认为扩散系数D将与扩散方向无关而为一标量Jx=-D Jx----沿x方向的扩散流量密度Jy=-D Jy---沿Y方向的扩散流量密度Jz=-D Jz---沿Z方向的扩散流量密度适用于:稳定扩散菲克第二定律:是在菲克第一定律基础上推导出来的如图所示扩散体系中任一体积元dxdydz在dt时间内由x方向流进的净物质增量应为: 同理在y、z方向流进的净物质增量分别为: 放在δt时间内整个体积元中物质净增量为: 若在δt时间内,体积元中质点浓度平均增量δc,则: 若假设扩散体系具有各向同性,且扩散系数D不随位置坐标变化则有: 适用范围:不稳定扩散3、扩散的布朗运动理论爱因斯坦用统计的方法得到扩散方程,并使客观扩散系数与扩散质点的微观运动得到联系,得到:D=ξ2/6τξ2为扩散质点在时间τ内位移平方的平均值对固态扩散介质:D=1/6fr2F:原子有效跃迁频率;r:原子迁移的自由程。

      可见,扩散的不朗运动规理论,确定了菲克定律中扩散系数的物理含义,在固体介质中,作布朗运动的大量质点的扩散系数决定于质点的有效跃迁频率和迁移自由程r平方的乘积三、扩散动力方程的应用举例1、稳定扩散:气体通过某物质的渗透过程高压氧气球罐的氧气泄漏问题 设罐内外径分别为r1和r2,罐内压p1,外压p2(大气压)P1可认为不随时间变化,为稳定扩散由菲克第一定律可知单位时间内氧气泄漏量: D和分别为O2在钢罐内的扩散系数和浓度梯度积分为: C2、C1分别为O2在球罐外壁和内壁表面的溶解浓度又C=K√P 得单位时间O2泄漏量为: 2、不稳定扩散分为两种典型的边界条件(1)在整个扩散过程中扩散质点在晶体表面的浓度C0保持不变;(2)一定量的扩散质θ由晶体表面向内部扩散以一维扩散为例,讨论两种边界条件下,扩散动力学方程的解:(1)可归纳为如下边界条件的不稳定扩散求解问题在整个扩散过程中扩散质点在晶体表面的浓度 C0保持不变 解得: 利用误差函数表可很方便地得到扩散体系中任何时刻t,任何位置x处扩散质点的浓度C(x、t),反之,若从实验中测得C(x、t),便可求得扩散深度x与时间t的近似关系: (2)第二种边界条件:定量扩散质θ由晶体表面(x=0)向内部扩散。

      当t=0时,|x|>0, C(x,0)=0当t>0时,扩散到晶体内部的质点总数不变为θ即: 可用于扩散系数的测定,通过测量经历一定的时间后,从表面到不同深度处放射性原子的浓度,可得D,将上式两边取对数: 用LnC(x,t)~x2作图得一直线,斜率为:-1/4Dt截距为:Lnθ/2√πbt可求得扩散系数D §7-2 扩散过程的推动力、微观机构与扩散系数 一、扩散的一般推动力 由前可知,当系统中存在浓度梯度时,会产生向浓度减少方向的扩散,当浓度梯度为零时,扩散达平衡但实际情况并不完全如此如图溶体中发生的某些组分的偏聚,玻璃的分相过程以及晶界上杂质是偏析等都出现质点的扩散向着浓度增大的方向进行,即逆扩散可知,浓度梯度不能反映质点定向扩散推动力的实质表征扩散推动力应用化学位梯度,只有当化学位梯度为零时,系统扩散方可达到平衡对一多组分体系,可推导得(见P235): ———扩散系数的一般热力学关系其中:Bi:为单位力作用下,组分I质点的平均速率或称消度ri:I组分的活度系数;Ni:I组分的摩尔浓度Di*:自扩散系数;Di为本扩散系数对于非理想混合体系: (1)当 则Di>0为正常扩散,物质由高浓度处向低浓度处,扩散的结果使溶质趋于均匀化。

      (2)当 则Di<0称为反常扩散或逆扩散,扩散结果使溶质偏聚或分相二、质点迁移的微观机构与扩散系数(一)质点迁移的微观机构与扩散系数1、空位机构如图中③,质点从结点位置上迁移到相邻的空位中,在这种扩散方式中,质点的扩散方向是空位扩散方向的逆方向2、间隙机构如图中④所示,间隙质点穿过晶格迁移到另一个间隙位置3、易位机构图中①所示,两个相邻结点位置上的质点直接交换位置进行迁移4、环易位机构如图②,几个结点位置上的质点以封闭的环形依次交换位置进行迁移5、准间隙扩散图中⑤所示,间隙质点从间隙位置迁移结点位置,并将结点位置上的质点撞离结点位置而成为新的间隙质点二)扩散系数D=1/6fy21、空位机构r:空位与邻近结点原子的距离;f:结点原子成功跃迁到空位中的频率; A:比例系数;ν0:格点原子震动频率;Nv:空位浓度;ΔGw:空位迁移能若空位来源于晶体结构中的本征热缺陷,则Nv:Nv=exp{—ΔGf/2RT}ΔGf空位形成能所以空位机构与扩散系数: D:为本征扩散系数或自扩散系数因为ΔG=ΔH—TΔS r=Ka0 a0:晶胞参数 几何因子 2、间隙机构由于晶体中间隙原子浓度往往很小,所以实际上间隙原子所有邻近的间隙位都是空着的,可不考虑间隙形成能。

      间隙机构扩散系数: 比较两种扩散机构的扩散系数表达式:可用下列通式表达: D:频率因子;θ:扩散活化能(空位扩散活化能、形成能+空位迁移能;间隙由间隙原子迁移能)3、实际晶体的扩散系数对于实际晶体材料结构中,除本征热点陷提供的以外,还有非本征缺陷引入的空位∴Nv=NV'+NI NV':本征空位浓度;NI:非本征空位浓度扩散系数为: (1)在温度足够高的情况下,结构中来自于本征缺陷的空位浓度NV'可远大于NI,此时扩散为本征缺陷所控制(7-41)式完全等价于式(7-38)式2)当温度足够低时,结构中本征缺陷提供的空位浓度NV'可远小于NI,(7-14)式变为: D:为非本征扩散系数,扩散为非本征扩散三、非化学计量氧化物中的扩散1、金属离子空位型造成金属离子非化学计量空位的原因往往是环境中氧分压升高迫使部分Fe2+、Ni2+、Mn2+等二价过渡金属离子变成三价金属离子: (7-41)当缺陷反应平衡时,平衡常数KP由反应自由能控制:考虑平衡时,因此非化学计量空位浓度: 将上式代入式(7-41)式中空位浓度项,则得非化学计量空位对金属离子空位扩散系数的贡献。

      (6-34)显然若温度不变,根据式(6-34),若氧分压不变,图6-12为实验测得的氧分压对CoO中钴离子空位扩散系数影响关系,其直线斜率为1/6,可见理论分析与实验结果是一致的若T不变:用与作图所得直线斜率为1/6若P0不变:直线斜率负值为2、氧离子空位型 ZrO2-xO0=1/202(g)+V"0+2e'同前推导可得: 于是非化学计量空位对氧离子的空位扩散系数贡献为: 可见以上两种类型的LnD~1/T直线中均有相同的斜率负值表达式: 若考虑非化学计量氧化物中同时考虑本征缺陷空位,杂质缺陷空位以及非化学计量空位对扩散系数是贡献,其中LnD~1/T图,由含两个转折点的直线段构成如图7-10P239 §7-3 固体材料中扩散及影响扩散的诸因素 一、 晶体组成的复杂性在大多数实际固体材料中,往往具有多种化学成分因而一般情况下整个扩散井不局限于某一种原子或离子的迁移,而可能是集体行为自扩散(系数):一种原子或离子通过由该种原子或离子所构成的晶体中的扩散互扩散(系数):两种或两种以上的原子或离子同时参与的扩散对于多元合金或有机溶液体系等互扩散系统,尽管每一扩散组成具有不同的的自扩散系数,但它们均具有相同的互扩散系数,并且各扩散系数间将有下面所谓的Darken方程得到联系: 式中,N、D 分别表示二元体系各组成摩尔分数浓度和自扩散系数。

      二、 化学键的影响不同的固体材料其构成晶体的化学键性质不同,因而扩散系数也就不同在金属键、离子键或共价键材料中,空位扩散机构始终是晶粒内部质点迁移的主导方式,且因空位扩散活化能由空位形成能△Hf和原子迁移能△HM构成,故激活能常随材料熔点升高而增加但当间隙原子比格点原子小得多或晶格结构比较开放时,间隙机构将占优势三、 结构缺陷的影响晶界对离子扩散的选择性增强作用 ,例如在Fe2O3、COO、SrTiO3材料中晶界或位错有增强O2–离子的扩散作用,而在BeO、UO2、Cu2O和(ZrCa)O2等材料中则无此效应这种晶界对离子扩散的选择性增强作用是和晶界区域内电荷分布密切相关的Db:Dg:Ds=10-14:10-10:10-7Db、Dg、Ds分别为表面扩散、晶界扩散和晶格内扩散的活化能除晶界以外,晶粒内部存在的各种位错也往往是原子容易移动的途径结构中位错密度越高,位错对原子(或离子)扩散的贡献越大 四、 温度与杂质对扩散的影响 扩散活化能Q值越大,说明温度对扩散系数的影响越敏感温度和热过程对扩散影响的另一种方式是通过改变物质结构来达成的 在急冷的玻璃中扩散系数一般高于同组分充分退火的玻璃中的扩散系数。

      两者可相差一个数量级或更多这可能与玻璃中网络结构疏密程度有关 利用杂质对扩散的影响是人们改善扩散的主要途径一般而言,高价阳离子的引入可造成晶格中出现阳离子空位并产生晶格畸。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.