
高考数学第一轮总复习100讲第98 12.2离散型随机变量的期望值和方差.doc
3页△+△2019年数学高考教学资料△+△12.2 离散型随机变量的期望值和方差一、知识梳理1.期望:若离散型随机变量ξ,当ξ=xi的概率为P(ξ=xi)=Pi(i=1,2,…,n,…),则称Eξ=∑xi pi为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(xi-Eξ)2pi为随机变量ξ的均方差,简称方差.叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,Dξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.二、例题剖析【例1】 设ξ是一个离散型随机变量,其分布列如下表,试求Eξ、Dξ.ξ-101P1-22拓展提高既要会由分布列求Eξ、Dξ,也要会由Eξ、Dξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P(ξ=x1)=,P(ξ=x2)=,且x1 如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列和的期望,并求李明在一年内领到驾照的概率.〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓三、同步练习 g3.1098 离散型随机变量的期望值和方差1.设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为BA.n=4,p=0.6 B.n=6,p=0.4C.n=8,p=0.3 D.n=24,p=0.12.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为CA.2.44 B.3.376 C.2.376 D.2.43.设投掷1颗骰子的点数为ξ,则BA.Eξ=3.5,Dξ=3.52 B.Eξ=3.5,Dξ=C.Eξ=3.5,Dξ=3.5 D.Eξ=3.5,Dξ=4.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是AA.Eξ=0.1 B.Dξ=0.1C.P(ξ=k)=0.01k·0.9910-k D.P(ξ=k)=C·0.99k·0.0110-k5.已知ξ~B(n,p),且Eξ=7,Dξ=6,则p等于AA. B. C. D.6.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于CA.0.2 B.0.8 C.0.196 D.0.8047.有两台自动包装机甲与乙,包装重量分别为随机变量ξ1、ξ2,已知Eξ1=Eξ2,Dξ1>Dξ2,则自动包装机__乙______的质量较好.8.设一次试验成功的概率为p,进行100次独立重复试验,当p=________时,成功次数的标准差的值最大,其最大值为__ 5______.9.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是,则甲回家途中遇红灯次数的期望为__1.2______.10.一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有1个是正确答案.每题选择正确得2分,不选或错选得0分,满分是100分.学生甲选对任一题的概率为0.8,求他在这次测试中成绩的期望和标准差.11.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.12.一台设备由三大部件组成,在设备运转中,各部件需要调整的概率相应为0.10,0.20和0.30.假设各部件的状态相互独立,以ξ表示同时需要调整的部件数,试求ξ的数学期望Eξ和方差Dξ.13.将数字1,2,3,4任意排成一列,如果数字k恰好出现在第k个位置上,则称之为一个巧合,求巧合数的数学期望.14.(辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品. (Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P甲、P乙;(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,最大?最大值是多少?(解答时须给出图示)高考数学复习精品高考数学复习精品。












