好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

河南省商丘市乡第三中学高二数学理期末试题含解析.docx

7页
  • 卖家[上传人]:zh****71
  • 文档编号:224179655
  • 上传时间:2021-12-15
  • 文档格式:DOCX
  • 文档大小:318.62KB
  • / 7 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 河南省商丘市乡第三中学高二数学理期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的定义域是( )A. [3,4) B.(-∞,3] C. [3,+∞) D. (-∞,4]参考答案:A【分析】由偶次根号下的被开方数大于等于零、对数真数大于零,列出不等式组,进行求解即可详解】要使函数有意义,则 ,解得:;故答案选A【点睛】本题考查函数定义域的求法,根据函数解析式列出使它有意义的不等式组,解出不等式组即可得到答案,属于基础题2. 若,则下列结论不正确的是(  )A. B. C. D.参考答案:D由,所以,所以,由不等式基本性质知A,B,C对3. 当0()1-x B.log(1+x)(1-x)>1 C.0<1-x2<1 D.log(1-x)(1+x)>0参考答案:C法一:考查答案A:∵01-x.∴()x+1<()1-x,故A不正确;考查答案B:∵01,0<1-x<1.∴log(1+x)(1-x)<0,故B不正确;考查答案C:∵01.∴log(1-x)(1+x)<0.故D不正确.方法二:(特值法)取x=,验证立得答案C.4. 过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为A. B. C. D. 参考答案:B略5. 如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边长均为1,则该几何体的表面积为 ( )A. B. C. D.参考答案:D6. 用一个与圆柱母线成600角的平面截圆柱,截口为一个椭圆,则该椭圆的离心率为( ) A.    B.    C.     D.参考答案:C7. 命题“?x∈R,使得x2<1”的否定是(  )A.?x∈R,都有x2<1 B.?x∈R,使得x2≥1C.?x∈R,都有x≤﹣1或x≥1 D.?x∈R,使得x2>1参考答案:C【考点】命题的否定.【分析】由已知中的原命题,结合特称命题否定的方法,可得答案.【解答】解:命题“?x∈R,使得x2<1”的否定是“?x∈R,都有x2≥1”,即“?x∈R,都有x≤﹣1或x≥1”,故选:C8. 求经过圆x2+2x+y2=0的圆心G,且与直线x+y=0垂直的直线方程是(  )A.x﹣y+1=0 B.x﹣y﹣1=0 C.x+y﹣1=0 D.x+y+1=0参考答案:A【考点】圆的一般方程.【分析】将圆的方程x2+2x+y2=0可化为,(x+1)2+y2=1求其圆心G(﹣1,0),根据直线垂直的斜率关系,求出与直线x+y=0垂直的直线的斜率为1,根据点斜式即可写出所求直线方程.【解答】解:圆的方程x2+2x+y2=0可化为,(x+1)2+y2=1∴圆心G(﹣1,0),∵直线x+y=0的斜率为﹣1,∴与直线x+y=0垂直的直线的斜率为1,∴由点斜式方程可知,所求直线方程为y=x+1,即x﹣y+1=0,故选:A.9. “(x+1)(x﹣3)<0”是“x>﹣1”的(  )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【专题】计算题;函数的性质及应用.【分析】当“(x+1)(x﹣3)<0”成立时,可以推出“x>﹣1”成立,反之则不一定能推.由此即可得到“(x+1)(x﹣3)<0”是“x>﹣1”的充分不必要条件.【解答】解:∵当“(x+1)(x﹣3)<0”成立时,可得﹣1<x<3∴此时必定有“x>﹣1”成立,故充分性成立;反之,当“x>﹣1”成立时,不一定有“﹣1<x<3”成立,因此也不能推出“(x+1)(x﹣3)<0”成立,故必要性不成立.综上所述,“(x+1)(x﹣3)<0”是“x>﹣1”的充分不必要条件故选:A【点评】本题给出两个不等式的条件,要我们判断其充分必要性,着重考查了不等式的解法和充要条件的判断等知识,属于基础题.10. 已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:),可得这个几何体的体积是 ( )(A) (B) (C) (D)参考答案:B略二、 填空题:本大题共7小题,每小题4分,共28分11. 已知关于实数的方程组没有实数解,则实数的取值范围为 ▲ . 参考答案:12. 已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,则双曲线的离心率为 ▲ . 参考答案:略13. 命题“”的否定是___ ___.参考答案:14. 已知点A(4,4),若抛物线y2=2px的焦点与椭圆=1的右焦点重合,该抛物线上有一点M,它在y轴上的射影为N,则|MA|+|MN|的最小值为___________。

      参考答案:415. 若某同学把英语单词“”的字母顺序写错了,则可能出现的错误写法共有 _______________种(以数字作答).参考答案:359 略16. 在下列各命题中:①|a+b|-|a-b|≤2|b|; ②b、c∈R+,且x≠0,则|bx+|≥2;③若|x-y|<ε,则|x|<|y|+ε;④当且仅当ab<0或ab=0时,|a|-|b|≤|a+b|中的等号成立.其中真命题的序号为_________.参考答案:1,2,317. 从1=12,2+3+4=32,3+4+5+6+7=52中得出的一般性结论是  .参考答案:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2【考点】F3:类比推理.【分析】从具体到一般,观察按一定的规律推广.【解答】解:从具体到一般,按照一定的规律,可得如下结论:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2三、 解答题:本大题共5小题,共72分解答应写出文字说明,证明过程或演算步骤18. 设椭圆C: +=1(a>b>0)过点M(,),且离心率为,直线l过点P(3,0),且与椭圆C交于不同的A、B两点.(1)求椭圆C的方程;(2)求?的取值范围.参考答案:【考点】椭圆的简单性质.【分析】(1)由椭圆的离心率e===,则=①,将M(,),代入椭圆方程,即可求得椭圆的标准方程;(2)设其方程为:y=k(x﹣3),代入椭圆方程,由△>0,解得:k2<, =(x1﹣3,y1),=(x2﹣3,y2),则?=(x1﹣3)(x2﹣3)+y1y2=(k2+1)[x1x2﹣3(x1+x2)+9],由韦达定理可知,代入求得?=2+,由k的取值范围,即可求得?的取值范围.【解答】解:(1)由已知可得:由椭圆的离心率e===,则=①,由点M(,)在椭圆上,②,解得:a2=6,b2=4,∴椭圆C的方程为:; (2)①当直线l的斜率不存在时,l的方程为:x=3与椭圆无交点.故直线l的斜率存在,设其方程为:y=k(x﹣3),A(x1,y1),B(x2,y2),由,整理得:(3k2+2)x2﹣18k2x+27k2﹣12=0,∵△=(18k2)2﹣4(3k2+2)(27k2﹣12)>0,解得:k2<,x1+x2=,x1x2=,(6分)∵=(x1﹣3,y1),=(x2﹣3,y2)∴?=(x1﹣3)(x2﹣3)+y1y2=(x1﹣3)(x2﹣3)+k2(x1﹣3)(x2﹣3),=(k2+1)[x1x2﹣3(x1+x2)+9]=(k2+1)(﹣+9)==2+,(10分)∵0≤k2≤,∴<≤,∴<2+≤3,∴?∈(,3].(12分)【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查向量数量积的坐标运算,考查计算能力,属于中档题.19. (本小题满分14分)如图,在正方体中,(1)求异面直线与 所成的角; (2)求证 参考答案:略20. 已知函数且,若函数的图象过点(2,24).(1)求a的值及函数的零点;(2)求的解集.参考答案:(1)a=3 ,零点为0; (2)[1,+∞).【分析】(1)将点代入函数,可求得a的值,直接求f(x)=0的根,即得f(x)的零点;(2)根据函数y=3u-3,u=x+1是增函数,可知是增函数,根据函数的单调性,求解满足不等式得x的解集.【详解】因为函数且,图象过点,所以,即,得.函数,得,.所以函数的零点是0.由得,即,所以.则的解集为.【点睛】本题考查了求函数的零点问题,考查了与指数函数有关的不等式的解法,涉及了指数函数的单调性和简单的复合函数的单调性;复合函数的单调性满足“同增异减”原则,若指数不等式的类型为 ,则当时, ,当时,.21. 已知函数的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).(1)求函数f (x)的最小正周期;(2)若存在,使f(x0)=0,求λ的取值范围.参考答案:【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2ωx﹣)﹣λ,利用正弦函数的对称性解得:2ωx﹣=kπ+,结合范围ω∈(,1),可得ω的值,利用周期公式即可得解.(2)令f(x0)=0,则λ=2sin(﹣),结合范围﹣≤﹣≤,由正弦函数的性质可得﹣≤sin(﹣)≤1,进而得解λ的取值范围.【解答】(本题满分为12分)解:(1)=sin2ωx﹣cos2ωx﹣λ=2sin(2ωx﹣)﹣λ,∵函数f(x)的图象关于直线x=π对称,∴解得:2ωx﹣=kπ+,可得:ω=+(k∈Z),∵ω∈(,1).可得k=1时,ω=,∴函数f (x)的最小正周期T==…6分(2)令f(x0)=0,则λ=2sin(﹣),由0≤x0≤,可得:﹣≤﹣≤,则﹣≤sin(﹣)≤1,根据题意,方程λ=2sin(﹣)在[0,]内有解,∴λ的取值范围为:[﹣1,2]…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的对称性,三角函数的周期公式,考查了转化思想和数形结合思想,属于中档题.22. 已知数列{an}中,a1=1,an+1=(1)求a2,a3;(2)求证:{+}是等比数列,并求{an}的通项公式an;(3)数列{bn}满足bn=(3n﹣1)?,数列{bn}的前n项和为Tn,若不等式(﹣1)nλ<Tn+对一切n∈N*恒成立,求λ的取值范围.参考答案:解:(1)…(2)由得即…又所以是以为首项,3为公比的等比数列.…所以即…(3)…=两式相减得,∴…∴若n为偶数,则若n为奇数,则,∴﹣2<λ<3…(14分)考点:数列与不等式的综合;等比关系的确定.专题:综合题;等差数。

      点击阅读更多内容
      相关文档
      礼仪讲授教案.docx 高考语文一轮复习讲义 第5部分 传统文化阅读·名句名篇默写.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 微任务 作文书写——比天还大的事儿.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组二 真题研练.docx 高考语文一轮复习讲义 第3部分 传统文化阅读 文言文(考点部分) 任务组三 任务四 仔细比对准确提取概括分析文意.docx 高考语文一轮复习讲义 第1部分 语言策略与技能 任务组二 任务五 看准对象因境设辞做到语言得体.docx 高考化学 1.传统文化与STSE 答案解析.docx 高考语文一轮复习讲义现代文阅读 专题16 Ⅱ 真题研练.docx 高考化学 专项拔高抢分练 9.反应热与反应历程.docx 高考化学 专项拔高抢分练 1.传统文化与STSE.docx 高考物理 板块三  气体实验定律和热力学定律的综合应用.docx 高考化学 二题型3 无机化工生产流程题.docx 高考语文一轮复习讲义 第4部分 写作 专题17 Ⅲ 突破二 绘声绘色巧用细节描写生动丰满.docx 高考数学 中档大题练1.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面教材文言文复习综合试卷.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组三 微任务一 聚焦诗意准确选择.docx 高考数学 创新融合4 数列与导数.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面 教材文言文点线面 必修5课文1 归去来兮辞 并序.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 任务二 “三管”齐下美“言”有术文采抢眼养颜.docx 高考数学 满分案例三 立体几何.docx
      猜您喜欢
      后备干部选拔培养​.docx 医院会计人员继续教育管理制度.doc “优化营商环境、激发市场活力”专题生活会对照检查材料3400字.doc 2011届高考物理一轮复习教学案精品集46人造卫星宇宙速度 doc--高中物理.doc 教师招聘考试复习资料-教师招聘《小学教育学》通关试题每日练(2020年06月20日-8980).docx 医院成本定额管理、费用审核制度.doc 西晋的短暂统一和北方各族的内迁 (课堂PPT).ppt 第二单元我们周围的空气知识点总结(共3页).doc 2019-2020学年七年级生物下册-第1章-第二节-人类的生殖备课稿-(新版)新人教版.doc 巢湖市应急管理局2021年行政执法工作总结.docx 2019-2020学年九年级数学上册-1.3-正方形的判定与性质教学设计1-北师大版.doc 医院接受社会捐赠资助管理办法.doc 2011届高三第一轮复习选择题天天练25 doc--高中化学.doc 教师招聘考试复习资料-教师招聘《小学教育学》通关试题每日练(2020年06月20日-5652).docx 2019-2020学年七年级生物下册第4单元第5章人体内代谢废物的排出素材新版新人教版-.doc 湖北省十一校2022届高三12月第一次联考语文试题含答案.docx 医院信息标准化管理制度.doc 自我介绍英语作文带中文翻译范文.doc 2011届高考政治第一轮总复习高考满分练兵场 政治常识 4-2我国的宗教政策.doc 河南省商丘市余心白中学2020-2021学年高三生物期末试题含解析.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.