
勾股定理的十六种证明方法.doc
15页勾股定理的十六种证明方法[证法1]此主题相关图片如下:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a^2+b^2+4*(ab/2)=c^2+4*(ab/2)整理得到:a^2+b^2=c^2[证法2]以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴四边形EFGH是一个边长为c的正方形. 它的面积等于c^2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º, ∴ ∠DHA = 90º+ 90º= 180º. ∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)^2.∴(a+b)^2=c^2+4*(ab/2), ∴ a^2+b^2=c^2。
此主题相关图片如下:[证法3]以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状.∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD是一个边长为c的正方形,它的面积等于c^2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90º. ∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)^2. ∴(b-a)^2+4*(ab/2)=c^2,∴ a^2+b^2=c^2此主题相关图片如下:[证法4]以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE, ∴∠ADE = ∠BEC.∵∠AED + ∠ADE = 90º, ∴∠AED + ∠BEC = 90º.∴∠DEC = 180º―90º= 90º. ∴ ΔDEC是一个等腰直角三角形,它的面积等于c^2/2. 又∵∠DAE = 90º, ∠EBC = 90º, ∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于(a+b)^2/2(a+b)^2/2=2*ab/2+c^2/2,∴ a^2+b^2=c^2。
此主题相关图片如下:[证法5]做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED,∵∠EGF + ∠GEF = 90°,∴∠BED + ∠GEF = 90°,∴∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形. ∴∠ABC + ∠CBE = 90º. ∵ RtΔABC ≌ RtΔEBD, ∴∠ABC = ∠EBD.∴∠EBD + ∠CBE = 90º. 即∠CBD= 90º.又∵∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则a^2+b^2=S+2*ab/2 c^2=S+2*ab/2 ∴ a^2+b^2=c^2此主题相关图片如下:[证法6]做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90º,QP∥BC,∴ ∠MPC = 90º,∵ BM⊥PQ,∴ ∠BMP = 90º,∴ BCPM是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF. 从而将问题转化为[证法4](梅文鼎证明).此主题相关图片如下:[证法7]做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L. ∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于a^2/2,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积 =a^2. 同理可证,矩形MLEB的面积 =b^2.∵正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ a^2+b^2=c^2。
此主题相关图片如下:[证法8]如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 在ΔADC和ΔACB中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,∴ΔADC ∽ ΔACB. AD∶AC = AC ∶AB,即 AC^2=AD*AB. 同理可证,ΔCDB ∽ ΔACB,从而有 BC^2=BD*AB. ∴ AC^2+BC^2=(AD+BD)*AB=AB^2,即 a^2+b^2=c^2此主题相关图片如下:[证法9]做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H. ∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴ RtΔDHA ≌ RtΔBCA. ∴ DH = BC = a,AH = AC = b. 由作法可知, PBCA 是一个矩形,所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a. ∵ RtΔDGT ≌ RtΔBCA , RtΔDHA ≌ RtΔBCA. ∴ RtΔDGT ≌ RtΔDHA . ∴ DH = DG = a,∠GDT = ∠HDA .又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,∴ DGFH是一个边长为a的正方形. ∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a . ∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为此主题相关图片如下:[证法10]设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠ TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b,∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a.∴ GH = GT―HT = b―a. 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC. ∵ DB = EB―ED = b―a,∠HGF = ∠BDC = 90º,∴ RtΔHGF ≌ RtΔBDC. 即 S7=S2. 过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM .即 S8=S5. 由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,∴ ∠FQM = ∠CAR. 又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,∴ RtΔQMF ≌ RtΔARC. 即S4=S6.此主题相关图片如下:[证法11]在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB与AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得此主题相关图片如下:[证法12]在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图).过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD接于一个圆. 根据多列米定理,圆接四边形对角线的乘积等于两对边乘积之和,有此主题相关图片如下:[证法13]在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r. ∵ AE = AF,BF = BD,CD = CE,∴ AC+BC-AB=(AE+CE)+(BD+CD)-(AF-BF)= CE+CD= r + r = 2r, 此主题相关图片如下:[证法14]如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.此主题相关图片如下:[证法15]此主题相关图片如下:设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为(a+b)^2=a^2+2ab+b^2;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面此主题相关图片如下: / 。
