
高中数学数列放缩专题用放缩法处理数列和不等问题.doc
10页完满版)高中数学数列放缩专题:用放缩法办理数列和不等问题(含答案)用放缩法办理数列和不等问题(教师版)一.先求和后放缩(主假如先裂项求和,再放缩办理)例1.正数数列an的前n项的和Sn,满足2Snan1,试求:(1)数列an的通项公式;(2)设bn1,数列bn的前n项的和为Bn,求证:Bn1anan12解:(1)由已知得4Sn(an1)2,n2时,4Sn1(an11)2,作差得:4anan22anan212an1,所以(anan1)(anan12)0,又由于an为正数数列,所以anan12,即an是公差为2的等差数列,由2S1a11,得a11,所以an2n1(2)bn1(2n11)1(11),所以anan11)(2n22n12n1Bn1(111111)11123352n12n122(2n1)2真题操练1:(06全国1卷理科22题)设数列an的前n项的和,Sn4an12n12,n1,2,3,ggg333nn3.(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn2,n1,2,3,ggg,证明:TiSni1241n+12412解:(Ⅰ)由Sn=3an-3×2+3,n=1,2,3,,①得a1=S1=3a1-3×4+3所以a1=2再由①有S4-12n2,4,n-1=3an-13×+3,n=2,3将①和②相减得:annn-1=4nn-11n+1n=S-S3(a-a)-3×(2-2),n=2,3,整理得:an+2n=4(an-1+2n-1),n=2,3,,所以数列{an+2n}是首项为a1+2=4,公比为4的等比数列,即:an+2n=4×4n-1=4n,n=1,2,3,,所以an=4n-2n,n=1,2,3,,(Ⅱ)将ann代入①得S=4nn1n+121n+1n+1-2)=4-2n3×(4-2)-3×2+3=3×(2-1)(2n= 2×(2n+1-1)(2n-1)3T=2n=32n-1)=311Sn2×(2-1)(2n2×(2n-1-2-1)nn+1n+1所以,nTi=3n11)=3×(11)<32(2i-1-2i+1-1221-1-2n112i1i1二.先放缩再求和/11.放缩后成等比数列,再求和例2.等比数列an中,a11,前n项的和为Sn,且S7,S9,S8成等差数列.221设bnan,数列bn前n项的和为Tn,证明:Tnan.13解:∵A9A7a8a9,A8A9a9,a8a9a9,∴公比qa91a8.2111∴an(1n.bn4n.)14n(2)n32n21n()2(利用等比数列前n项和的模拟公式SnAqnA猜想)11∴Bnb1b2bn11112(122)1(11)13232232n3132n.132真题操练2:(06福建卷理科22题)已知数列an满足a11,an12an1(nN*).(I)求数列an的通项公式;(II)若数列bn滿足4b114b21L4bn1(an1)bn(nN*),证明:数列bn是等差数列;(Ⅲ)证明:n1a1a2...ann(nN*).23a2a3an12(I)解:Qan12an1(nN*),an112(an1),an1是以a112为首项,2为公比的等比数列an12n.即an221(nN*).(II)证法一:Q4k114k21...4kn1(an1)kn.4(k1k2...kn)n2nkn.2[(b1b2...bn)n]nbn,①2[(b1b2...bnbn1)(n1)](n1)bn1.②②-①,得2(bn11)(n1)bn1nbn,即(n1)bn1nbn20,nbn2(n1)bn120.2③-④,得nbn22nbn1nbn0,即bn22bn1bn0,bn2bn1bn1bn(nN*),b是等差数列。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






