
投资学课件第四章.ppt
94页第四章第四章 最优投资组合选择最优投资组合选择主要内容n资产配置:一种风险资产和一种无风险资产n两种风险资产的最优组合n多种风险资产的最优组合n多种风险资产+无风险资产n资产配置:风险资产和无风险资产n投资者在期初投资,在期末获得回报n一期模型是对现实的一种近似,如对零息债券、欧式期权的投资虽然许多问题不是一期模型,但作为一种简化,对一期模型的分析是分析多期模型的基础一期投资模型n完美的市场¡交易是无成本的,市场是可以自由进出的¡信息是对称的和可以无偿获得地¡存在很多交易者,没有哪一个交易者的行为对证券的价格产生影响¡无税收,无买、卖空限制¡证券无限可分,借贷利率相等假设资产配置:一种风险资产和一种无风险资产n在风险资产和无风险资产上配置n无风险资产: 国库券、银行存单、 n风险资产: 股票配置资产rf = 7% rf = 0%E(rp) = 15% p = 22%w = % in p(1-w) = % in rf例子E(rc) = wE(rp) + (1 - w)rfrc = 资产组合资产组合For example, w = .75E(rc) = .75(.15) + .25(.07)= .13 or 13%期望收益pc=Sincerfw= 0, then 资产组合的标准差c= .75(.22) = .165 or 16.5%If w = .75, thenc= 1(.22) = .22 or 22%If w = 1c= (.22) = .00 or 0%If w = 0 组合(无杠杆)可能的组合E(r)E(rp) = 15%rf = 7%22%0PF cE(rc) = 13%CThe CAL depicts the risk-return combinations for investors:The slope is:So here CAL (资本配置线)假设可以按照同样的利率借入现金,投资与风险资产;投资者拥有资金10000元,借入5000元,则投资组合中风险资产的比例为1.5,无风险资产为-0.5rB = (-.5) (.07) + (1.5) (.15) = .19B = (1.5) (.22) = .33有杠杆CAL (Capital Allocation Line)E(r)E(rp) = 15%rf = 7% p = 22%0PFE(rp) - rf = 8% BTo the left of P: lending at 7%, slope is 0.36.To the right of P: borrowing at 9%, slope is:The CAL is therefore kinked at P. 借入利率高于贷出利率CAL with Higher Borrowing RateE(r) 9%7%S = .36S = .27P p = 22%n风险厌恶程度高的投资者会持有更高比例的无风险资产.n风险厌恶程度低的投资者会持有更高比例的风险资产.n寻求高收益并承担高风险将会应用杠杆头寸。
风险厌恶与资产配置效用函数We have:So:最优化First-order condition to maximize U:Solving for w:An example: if 最优持有n风险资产的最优持有与风险溢价成正比;n风险资产的最优持有与风险资产方差成反比;n风险资产的最优持有与风险厌恶程度成反比;风险偏好与资本配置E(r) 7%PLenderBorrower p = 22%最优持有Lenders have a larger A, steeper indifference curves compared to the borrower (more risk averse). They require more expected return to compensate for taking an additional unit of risk.Investors seek the highest possible utility, represented by the highest possible indifference curve which touches the CAL.两种风险资产的最优组合投资组合收益的均值方差最优化问题假设:无卖空限制假设:无卖空限制两种股票: 收益 p2 = w12 12 + w22 22 + 2W1W2 Cov(r1r2) = w12 12 + w22 22 + 2W1W2 1,2 1 2两种股票: 风险最优化问题MinMinSubject to推导结果两种股票组合-投资机会集14%E(r)St. Dev15%20%10%Range of values for 1,2+ 1.0 > > -1.0If = 1.0, the securities would be perfectly positively correlatedIf = - 1.0, the securities would be perfectly negatively correlated相关系数If = 1.0: p2 = w12 12 + w22 22 + 2W1W2 1 2 = [w1 1 + w2 2 ] 2With perfect positive correlation, standard deviation of the portfolio is just weighted average of each component’s standard deviation完全正相关完全正相关完全正相关完全正相关完全正相关 = 114%E(r)St. Dev15%20%10%If = -1.0: p2 = w12 12 + w22 22 – 2W1W2 1 2 = [w1 1 - w2 2 ] 2- - 完全负相关完全负相关完全负相关完全负相关两种股票组合-投资机会集14%E(r)St. Dev15%20% = -1 = -110%不相关图n期望收益和标准差相同的股票,组合的效果可能不同n取决于相关系数n-1.0 < < +1.0n相关系数越小,分散化可能达到的效果越好nIf = +1.0, 风险无法分散nIf = -1.0, 风险可以对冲.分散化The first-order condition to minimize : Therefore:全局最小方差组合(MVP)12E(r2) = .14= .2012= .2E(r1) = .10= .15 最小方差组合:例子W1=(.2)2 - (.2)(.15)(.2)(.15)2 + (.2)2 - 2(.2)(.15)(.2)W1= .6733W2= (1 - .6733) = .3267最小方差组合:例子rp = .6733(.10) + .3267(.14) = .1131p= [(.6733)2(.15)2 + (.3267)2(.2)2 +2(.6733)(.3267)(.2)(.15)(.2)]1/2p= [.0171]1/2= .1308 最小方差组合:例子有效前沿14%E(r)St. Dev15%20%Minimal variance portfolio10%多种风险资产投资组合收益的均值方差最优化问题可行集¡可行集n由N 种可交易风险证券中的任意 K 种形成的证券组合构成的集合称为可行集。
¡在均值-标准差平面上来刻画可行集三种以上证券形成的可行集¡可行集的两个重要性质n(1)只要N 不小于3,可行集对应 于均值-标方差平面上的区域为二维的n(2)可行集的左边向左凸¡ 可行集三种证券形成可行集的例子n三点形成地区域前沿n定义:一个证券组合称为前沿证券组合,如果它在所有具有相同期望回报率的证券组合中具有最小方差n定义:所有前沿证券组合构成的集合称为证券组合前沿性质n证券组合前沿的性质¡性质1:整个证券组合前沿可以由任何两个前沿证券组合生成¡性质2:前沿证券组合的任何凸组合仍然在证券组合前沿上n在均值-标准差平面上的证券组合前沿最小方差前沿/有效前沿E(r)EfficientfrontierGlobalminimumvarianceportfolioMinimumvariancefrontierIndividualassetsSt. Dev.分散化-降低风险nIn a portfolio of N assets with equal weights, Risk Reduction with DiversificationnTherefore,nAs N becomes large enough, the individual risk of assets will be diversified away, what’s left is the contribution to the total risk caused by the covariance terms. Risk Reduction with DiversificationNumber of SecuritiesSt. DeviationMarket RiskUnique Risk风险资产+无风险资产n可以以相等的利率借贷无风险资产假设几类不同的资本配置线ME(r)CAL (Globalminimum variance)CAL (A)CAL (P)PAFPP&FA&FMAGPM 构造过程n风险资产的有效前沿;n无风险资产与切点组合构成新的有效前沿;n新的有效前沿-资本配置线nSince the tangency portfolio lies on the highest CAL that touches the efficient frontier, we just have to maximize the slope of the CAL:nMax subject tonIn the case of two securities:n 切点组合PORTFOLIO OF TWO RISKY ASSETSOPTIMAL RISKY PORTFOLIOSAsset allocation with stocks,bonds and billsThe optimal risky portfolio with two risky assets and a risk free assetAsset allocation with stocks,bonds and billsAsset allocation with stocks,bonds and billsAsset allocation with stocks,bonds and bills资产配置风险资产与无风险资产E(r) RfPLenderBorrower风险资产E(r)Efficientfrontier ofrisky assetsMorerisk-averseinvestorU’’’U’’U’QPSSt. DevLessrisk-averseinvestor相同无风险利率借贷E(r)FrfAPQBCALSt. Dev不能借入借贷利率不等借贷利率不等-风险厌恶高借贷利率不等-风险厌恶低借贷利率不等-风险厌恶中投资过程n证券分析和市场分析:评估所有可能投资工具的风险和期望回报率特性n在对证券市场进行分析的基础上,投资者确定最优的证券组合:从可行的投资组合中确定最优的风险-收益机会,然后决定最优的证券组合——最优投资组合理论¡选择的目标:使得均值-标准差平面上无差异曲线的效用尽可能的大¡选择的对象:均值-标准差平面上的可行集难度¡优化技术是是投资组合构造过程中最简单的环节;难度最大的是证券分析。
¡GIGO----Garbage in-Garbage outInternational Correlation Structure and Risk DiversificationnSecurity returns are much less correlated across countries than within a country.¡This is so because economic, political, institutional, and even psychological factors affecting security returns tend to vary across countries, resulting in low correlations among international securities.¡Business cycles are often high asynchronous across countries.International Correlation StructureStock MarketAUFRGMJPNLSWUKUSAustralia (AU).586 France (FR).286.576 Germany (GM).183.312.653 Japan (JP).152.238.300.416 Netherlands (NP).241.344.509.282.624 Switzerland (SW).358.368.475.281.517.664 United Kingdom (UK).315.378.299.209.393.431.698 United States (US).304.225.170.137.271.272.279.439Relatively low international correlations imply that investors should be able to reduce portfolio risk more if they diversify internationally rather than domestically.Domestic vs. International Diversification0.440.270.12Portfolio Risk (%)Number of Stocks11020304050Swiss stocksU.S. stocksInternational stocksWhen fully diversified, an international portfolio can be less than half as risky as a purely U.S. portfolio.A fully diversified international portfolio is only 12 percent as risky as holding a single security.Optimal International Portfolio SelectionnThe correlation of the U.S. stock market with the returns on the stock markets in other nations varies.nThe correlation of the U.S. stock market with the Canadian stock market is 70%.nThe correlation of the U.S. stock market with the Japanese stock market is 24%.nA U.S. investor would get more diversification from investments in Japan than Canada.Summary Statistics for Monthly Returns 1980-1992 ($U.S.)Stock MarketCorrelation CoefficientMean (%)SD (%) CNFRGMJPUKCanada (CN) .795.830.90France (FR)0.38 1.427.011.02Germany (GM)0.330.66 1.236.740.87Japan (JP)0.260.420.36 1.477.311.22United Kingdom0.580.540.490.42 1.525.410.90United States0.700.450.370.240.571.334.560.80.79% monthly return = 9.48% per yearSummary Statistics for Monthly Returns 1980-1992 ($U.S.)Stock MarketCorrelation CoefficientMean (%)SD (%) CNFRGMJPUKCanada (CN) .795.830.90France (FR)0.38 1.427.011.02Germany (GM)0.330.66 1.236.740.87Japan (JP)0.260.420.36 1.477.311.22United Kingdom0.580.540.490.42 1.525.410.90United States0.700.450.370.240.571.334.560.80b measures the sensitivity of the market to the world market. Clearly the Japanese market is more sensitive to the world market than is the U.S. The Optimal International PortfolioUSCNGMUKJPFR4.2%1.53OIPEfficient setRfComposition of the OIP for a U.S. Investor Belgian market14.66%Italian market0.37%Japanese market9.25%Dutch market14.15%Swedish market20.26%U.S. market41.31%Total100.00%1.53%1.33%Gains from International DiversificationnFor a U.S. investor, the risk-return tradeoff for the optimal international portfolio and optimal domestic portfolio are shown below and at right. OIPODPMean Return1.53%1.33%Standard Deviation4.27%4.56%riskreturn4.27% 4.56%OIPODPexample1. You manage a risky portfolio with an expected rate of return of 18% and a standard deviation of 28%. The T-bill rate is 8%.nYour client chooses to invest 70% of a portfolio in your fund and 30% in a T-bill money market fund. What is the expected value and standard deviation of the rate of return on his portfolio?nSuppose that your risky portfolio includes the following investments in the given proportion stock A 25%; stock B 32%; stock C 43%. What are the investment proportions of your client’s overall portfolio, including the position in T-bill?nWhat is the reward to variability ratio(S) of your risky portfolio? Your client’snDraw the CAL of your portfolio on an expected return-standard deviation diagram, what is the slope of the CAL? Show the position of your client on your fund’s CalnSuppose that your client decides to invest in your portfolio a proportion y of the total investment budget so that the overall portfolio will have an expected rate of return of 16%. What is the proportion y? What are your client’s investment proportions in your three stocks and the T-bill fund? What is the standard deviation of the rate of return on your client’s portfolio?nSuppose that your client prefers to invest in your fund a proportion y that maximizes the expected return on the complete portfolio subject to the constraint that the complete portfolio’s standard deviation will not exceed 18%. What is the investment proportion y? What is the expected rate of return on the complete portfolio?nYour client’s degree of risk aversion is A=3.5. What proportion y of the total investment should be invested in your fund? What is the expected value and standard deviation of the rate of return on your client’s optimized portfolio? example。
