
浙江省杭州市学军中学高考数学模拟试卷(份)word.doc
25页书 山 有 路2017年浙江省杭州市学军中学高考数学模拟试卷(5月份) 一.选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<﹣2或x>1},B={x|x>2或x<0},则(∁RA)∩B=( )A.(﹣2,0) B.[﹣2,0) C.∅ D.(﹣2,1)2.设复数z满足=i,则|z|=( )A.1 B. C. D.23.已知q是等比数{an}的公比,则q<1”是“数列{an}是递减数列”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知某几何体的三视图如图所示,则该几何体的表面积为( ) A.16 B.26 C.32 D.20+5.若存在实数x,y使不等式组与不等式x﹣2y+m≤0都成立,则实数m的取值范围是( )A.m≥0 B.m≤3 C.m≥l D.m≥36.展开式中所有奇数项系数之和为1024,则展开式中各项系数的最大值是( )A.790 B.680 C.462 D.3307.已知正实数a,b满足a2﹣b+4≤0,则u=( )A.有最大值为 B.有最小值为C.没有最小值 D.有最大值为38.已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1, =,则||2的最大值是( )A. B. C. D.9.如图,正方形ABCD与正方形BCEF所成角的二面角的平面角的大小是,PQ是正方形BDEF所在平面内的一条动直线,则直线BD与PQ所成角的取值范围是( )A.[,] B.[,] C.[,] D.[,]10.已知定义在(0,+∞)上的函数f(x)的导函数f(x)满足,且,其中e为自然对数的底数,则不等式的解集是( )A. B.(0,e) C. D. 二.填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.若2sinα﹣cosα=,则sinα= ,tan(α﹣)= .12.商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.则顾客抽奖1次能获奖的概率是 ;若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,则EX= .13.在△ABC中,D是AC边的中点,A=,cos∠BDC=﹣,△ABC的面积为3,则sin∠ABD= ,BC= .14.已知抛物线y=x2和直线l:y=kx+m(m>0)交于两点A、B,当时,直线l过定点 ;当m= 时,以AB为直径的圆与直线相切.15.根据浙江省新高考方案,每位考生除语、数、外3门必考科目外,有3门选考科目,并且每门选考科目都有2次考试机会,每年有两次考试时间,某考生为了取得最好成绩,将3门选考科目共6次考试机会安排在高二与高三的4次考试中,且每次至多考2门,则该考生共有 种不同的考试安排方法.16.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,P,Q,R分别是棱AB,AD,AA1的中点.以△PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在此正方体的表面上.则这个直三棱柱的体积是 .17.函数y=ax2﹣2x的图象上有且仅有两个点到直线y=x的距离等于,则实数a的取值集合是 . 三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.设函数f(x)=sin2ωx﹣cos2ωx+2sinωxcosωx+λ的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若y=f(x)的图象经过点(,0),求函数f(x)在区间[0,]上的取值范围.19.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.20.已知函数f(x)=+x(a,b∈R).(Ⅰ)当a=2,b=3时,求函数f(x)极值;(Ⅱ)设b=a+1,当0≤a≤1时,对任意x∈[0,2],都有m≥|f(x)|恒成立,求m的最小值.21.已知椭圆+y2=1(a>1),过直线l:x=2上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,求△POA面积的最小值.22.已知函数fn(x)=xn(1﹣x)2在(,1)上的最大值为an(n=1,2,3,…).(1)求数列{an}的通项公式;(2)求证:对任何正整数n(n≥2),都有an≤成立;(3)设数列{an}的前n项和为Sn,求证:对任意正整数n,都有Sn<成立. 2017年浙江省杭州市学军中学高考数学模拟试卷(5月份)参考答案与试题解析 一.选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<﹣2或x>1},B={x|x>2或x<0},则(∁RA)∩B=( )A.(﹣2,0) B.[﹣2,0) C.∅ D.(﹣2,1)【考点】1H:交、并、补集的混合运算.【分析】由全集R及A,求出A的补集,找出B与A补集的交集即可.【解答】解:∵集合A={x|x<﹣2或x>1},∴∁RA={x|﹣2≤x≤1},集合BB={x|x>2或x<0},∴(∁RA)∩B={x|﹣2≤x<0}=[﹣2,0),故选:B. 2.设复数z满足=i,则|z|=( )A.1 B. C. D.2【考点】A8:复数求模.【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A. 3.已知q是等比数{an}的公比,则q<1”是“数列{an}是递减数列”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】题目给出的数列是等比数列,通过举反例说明公比小于1时数列还可能是递增数列,反之,递减的等比数列公比还可能大于1,从而得到“q<1”是“等比数列{an}是递减数列”的既不充分也不必要的条件.【解答】解:数列﹣8,﹣4,﹣2,…,该数列是公比q=的等比数列,但该数列是递增数列,所以,由等比数{an}的公比q<1,不能得出数列{an}是递减数列;而数列﹣1,﹣2,﹣4,﹣8,…是递减数列,但其公比q=,所以,由数列{an}是递减数列,不能得出其公比q<1.所以,“q<1”是“等比数列{an}是递减数列”的既不充分也不必要的条件.故选D. 4.已知某几何体的三视图如图所示,则该几何体的表面积为( ) A.16 B.26 C.32 D.20+【考点】L!:由三视图求面积、体积.【分析】几何体是三棱锥,根据三视图可得三棱锥的一侧棱与底面垂直,结合直观图求相关几何量的数据,把数据代入棱锥的表面积公式计算即可.【解答】解:根据三视图知:该几何体是三棱锥,且三棱锥的一个侧棱与底面垂直,高为4,如图所示:其中SC⊥平面ABC,SC=3,AB=4,BC=3,AC=5,SC=4,∴AB⊥BC,由三垂线定理得:AB⊥BC,S△ABC=34=6,S△SBC=34=6,S△SAC=45=10,S△SAB=ABSB=45=10,∴该几何体的表面积S=6+6+10+10=32.故选:C. 5.若存在实数x,y使不等式组与不等式x﹣2y+m≤0都成立,则实数m的取值范围是( )A.m≥0 B.m≤3 C.m≥l D.m≥3【考点】7C:简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x﹣2y对应的直线进行平移,可得当x=y=3时,z取得最小值为﹣3;当x=4且y=2时,z取得最大值为0,由此可得z的取值范围为[﹣3,0],再由存在实数m使不等式x﹣2y+m≤0成立,即可算出实数m的取值范围.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(4,2),B(1,1),C(3,3)设z=F(x,y)=x﹣2y,将直线l:z=x﹣2y进行平移,当l经过点A时,目标函数z达到最大值,可得z最大值=F(4,2)=0当l经过点C时,目标函数z达到最小值,可得z最小值=F(3,3)=﹣3因此,z=x﹣2y的取值范围为[﹣3,0],∵存在实数m,使不等式x﹣2y+m≤0成立,即存在实数m,使x﹣2y≤﹣m成立∴﹣m大于或等于z=x﹣2y的最小值,即﹣3≤﹣m,解之得m≤3故选:B 6.展开式中所有奇数项系数之和为1024,则展开式中各项系数的最大值是( )A.790 B.680 C.462 D.330【考点】DB:二项式系数的性质.【分析】由题意可得:2n﹣1=1024,解得n=11.可得展开式中各项系数的最大值是或.【解答】解:由题意可得:2n﹣1=1024,解得n=11.则展开式中各项系数的最大值是或,则==462.故选:C. 7.已知正实数a,b满足a2﹣b+4≤0,则u=( )A.有最大值为 B.有最小值为C.没有最小值 D.有最大值为3【考点】7F:基本不等式.【分析】a2﹣b+4≤0,可得b≥a2+4,a,b>0.可得﹣≥﹣,再利用基本不等式的性质即可得出.【解答】解:∵a2﹣b+4≤0,∴b≥a2+4,a,b>0.∴a+b≥a2+a+4,∴≤,∴﹣≥﹣,∴u==3﹣≥3﹣=3﹣≥3﹣=,当且仅当a=2,b=8时取等号.故选:B. 8.已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1, =,则||2的最大值是( )A. B. C. D.【考点】93:向量的模.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为: =1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为: =1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.故选:B. 9.如图,正方形ABCD与正方形BCEF所成角的二面角的平面角的大小是,PQ是正方形BDEF所在平面内的一条动直线,则直线BD与PQ所成角的取值范围是( )A.[,] B.[,] C.[,] D.[,]【考点】LM:异面直线及其所成的角.【分析】以B为原点,BC为x轴,BA为y轴,过B作平面ABCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线BD与PQ所成角的取值范围.【解答】解:以B为原点,BC为x轴,BA为y轴,过B作平面ABCD的垂线为z轴,建立空间直角坐标系,设BC=1,则B(0,0,0),D(1,1,0),C(1,0,0),。












