
两位数乘两位数教学设计.doc
5页课 题两位数乘两位数执教教师彭建斌教学目标1、 经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握算法2、 通过自主探究、讨论交流等方式,借助点子图,初步培养学生数形结合的思想,体验解决问题方法的多样化,渗透“转化”思想3、 学生在自主提出问题、独立解决问题的过程中国年获得成功的体验,感受数学与生活的密切联系,培养学生运用转化方法主动学习新知的能力,发展学生的问题意识和应用意识,体验学数学、用数学的乐趣教学重、难点教学重点:掌握两位数乘两位数竖式的算理和算法教学难点:理解两位数乘两位数的算理教学准备课件、钟面、印有时间尺的纸条教 学 过 程一、 创设情境,引入新课1、 提出问题 师:为了奖励爱学习的孩子,星期天,我去了天虹书店买书看,这是我为你们精心挑选的书课件:每套书14本,买12套)师:从图中你了解了哪些数学信息?生:每套书14本,买12套师:能提出一个数学问题吗?生:一共买了多少本书?(课件出示问题)2、列式师:怎样列式?请一名同学列式3、 揭示课题师:这个算式跟我们之前所学的有什么不一样?板书课题:两位数乘两位数3、质疑师:那么,看到这个新的算式,你有什么想问的?(预设:怎么计算?怎么列竖式?为什么用乘法计算?)师在算式后打问号。
二、 自主探究,解决问题1、 理解意义,出示点子图 师:你们真是一群爱思考的孩子!我们先来解决这个问题,为什么用乘法计算?谁能分析?生:一套书是14本,12套书就有12个14本 师:为了便于研究,老师用点子图来表示书课件先出示一个14本,再逐行出示12个14本)一套书是1个14本,2套书是2个14本,12套书是12个14本,所以用乘法来计算擦掉问号)2、利用点子图,探究算法师:你能估一估,它的积大约是多少吗?师:下面我们就一起来探究14×12的算法 师:请看清活动要求思考:能不能利用旧知识求出14×12的积课件出示:思考)圈画:在点子图上,用彩色笔圈一圈、画一画,再列式计算课件出示:圈画、列式)交流:完成的同学跟同桌交流你的想法课件出示:交流)学生在习题纸上独立完成 ,师了解情况不同方法的同学将作品带到讲台前,准备交流)3、 交流汇报实物展示台上交流,请小作者讲解方法师:老师收集了几种不同的算法,我们一起来分享这些小老师的想法来,这位小老师,请!(前面3个孩子自己说想法,后面的几种让下面同学说生讲解完师把作品贴到黑板上4、 “数形结合思想”的渗透师:这些作品都借助点子图来分析问题,并用自己的方法求出了14×12等于168。
这种思想方法在数学上叫“数形结合”板书:数形结合)5、 “转化”思想方法师:我们再来看看这些作品,它们有什么相同的地方?生:结果都相同生:都是将一个两位数拆成两部分去和另一个两位数相乘师:拆成什么样的两部分?生:拆成两个一位数或者整十数师:为什么要拆开算?生:两位数乘两位数我们没学过,拆成两位数乘一位数和整十数就是我们学过的知识师:说得对,同学们把两位数乘两位数这个新知识转化成了两位数乘一位数或整十数的旧知识板书“转化”)转化也是一种非常重要的数学学习方法,在以后的学习中我们经常会用到6、最优拆法师:那么,这些转化方法中,哪种方法在计算过程中比较简单?生:把12拆成10和2.因为14×10口算就可以得出结果,14×2也比较容易口算师:那我们一起来学习这种好方法课件动态演示)三、 探究竖式,建构模型1、尝试列竖式师:刚才我们使用“数形结合”口算出14×12的积,其实,我们还可以列竖式计算两位数乘两位数接下来我们重点研究两位数乘两位数的笔算补充板书:笔算)师:你能不能用竖式把屏幕中的口算过程表示出来呢?请在自己的练习本列出竖式学生在练习本上写竖式师收集不同的作品,准备交流2、 理解竖式的意义和写法。
先出示2种不符合竖式格式的作品)师:大家能看明白这些竖式吗?哪种竖式更能体现刚才的口算过程?生:第2个师:第一个竖式虽然很简洁、直接写出了答案,但我们要求竖式中体现口算过程,而第二个竖式符合要求出示只有一个竖式的方法)师:这里还有另一种方法请小作者来说说你的算法师:这个孩子的想法很巧妙,他用一个竖式把刚才的三个竖式全概括了你们对这个竖式有疑问吗?这个加号到底写不写?是的,可以不写,这样比较简洁出示正确的竖式)师:再看这一个作品,和刚才的有什么不一样?生:14后面没写0.(对比两个竖式)师:第二个积的0可以去掉吗?生:不可以去掉,去掉变成14了生:可以去掉,因为数位对齐了,表示14个十,就表示140.师:是的,只要4对齐十位,就表示14个十,即140,可以去掉3、 板书竖式,规范格式师:那么我们就请这个孩子把竖式写到到黑板上师:能说说你是怎么算的吗?听明白了吗?谁再来说一说?生:将12拆成10和2,先计算14×2,这是两位数乘一位数,等于28再计算14×10,积写在第二层的位置,4写在十位上,表示?(4个10),0可以省略不写1写在哪里?(百位)为什么?(10乘10等于100)最后将两个积加起来,加号可以省略不写。
师:说得真清楚! 4、数形结合,抽象模型师:下面我们结合点子图来理解竖式师:我们把第二个因数12拆成10和2,先计算什么?(14×2)板书:14×2的积)这是几套书的本数?(板书:2套书的本数)再计算什么?(14×10)所以140是?(板书:14×10的积)表示什么?(板书:10套书的本数)结合点子图,找到四句口诀的位置师:我们在列竖式时用了哪几句口诀?谁能按顺序说一说?(板书:二四得八、一二得二、一四得四、一一得一)师:你能在点子图中找到它们的位置吗?它们分别表示什么?在竖式中找到它们的位置请一生上来指)(课件边出示竖式,边出示点子图中的部分)把这四个乘积加起来就是168,它们就是14乘12的积师:你看,这个点子图,很好地帮助我们理解了竖式的每一部分师:同学们还有疑问吗?(如果学生不问,师问:4为什么要写在十位?)生:因为4是1个是和4相乘的积,是4个十4、改正自己的竖式,进一步理解师:计算两位数乘两位数时,列竖式是一种比较简便的方法,今后我们可以用竖式进行计算你会用竖式进行计算了吗?把刚才自己列的竖式改正过来,并和同桌说说每一步求什么四、 巩固练习,掌握方法1、完成练习题。
师:两位数乘两位数的笔算大家学得很认真,周老师想买更多的书奖励给你们课件出示练习题:每套书有13本,周老师买21套一共买了多少本书?师: 谁能大声地读题?在自己的本子独立解决这个问题,列竖式进行计算 生独立解决问题展示平台上展示解决问题的过程说说每一步算的是什么师:对于他的竖式你有什么问题吗?如果没有学生提问,老师问:6为什么写在十位上?2、 游戏-猜一猜师:同学们对竖式掌握得这么好,下面我们来玩一个游戏请你猜一猜笑脸下面藏着几?(第一个指名说,第二个先独立思考,再同桌交流,说说从哪里开始思考 4 3 × 1 2 1 2 6 6 6 8师:孩子们既能用竖式进行计算,还能做到活学活用,这是数学学习的好方法五、 总结收获,知识延伸1、师:那么,通过本节课的学习,你有什么收获?2、师:是呀,我们利用点子图,掌握了两位数乘两位数的笔算大家知道吗?很早之前,古人就发明了一种计算两位数乘两位数的格子算法,叫“铺地锦”,跟点子图有点相似。
明朝《算法统宗》里讲述了“铺地锦”的算法课件出示14×12的格子算法)3、师总结:同学们,希望你们沿着前人的足迹努力前行,继续研究,为数学作出自己的贡献评注与附记板书设计: 两位数乘两位数的笔算学生作品 14×12=168 二四得八(8) 竖式 一二得二(20) 一四得四(40) 一 一得一(100)“数形结合”“转化”。












