
252用列举法求概率(2).ppt
14页25.2 用列举法求概率用列举法求概率复习引入复习引入v必然事件;必然事件; 在一定条件下必然发生的事件,在一定条件下必然发生的事件,v不可能事件不可能事件;; 在一定条件下不可能发生的事件在一定条件下不可能发生的事件v随机事件随机事件;; 在一定条件下可能发生也可能不发生的事件,在一定条件下可能发生也可能不发生的事件,2.概率的定义概率的定义对于一个随机事件对于一个随机事件A,把刻画其发,把刻画其发生可能性大小的数值,称为生可能性大小的数值,称为随机随机事件事件A的的概率,概率,记作记作P((A)). 0≤P(A) ≤1.必然事件的概率是必然事件的概率是1,不可能事件的概率是,不可能事件的概率是0.等可能性事件等可能性事件v问题问题1.掷一枚硬币,落地后会出现几种结果?掷一枚硬币,落地后会出现几种结果? 正面反面向上正面反面向上2种种,可能性相等可能性相等v问题问题2.抛掷一个骰子,它落地时向上的数有几抛掷一个骰子,它落地时向上的数有几种可能?种可能? 6种等可能的结果种等可能的结果v问题问题3.从分别标有从分别标有1.2.3.4.5.的的5根纸签中随机抽根纸签中随机抽取一根,抽出的签上的标号有几种可能?取一根,抽出的签上的标号有几种可能? 5种等可能的结果种等可能的结果。
等可能性事件等可能性事件的两个特征:等可能性事件的两个特征:1.出现的结果有限多个出现的结果有限多个;2.各结果发生的可能性相等;各结果发生的可能性相等;等可能性事件的概率可以用列举法而求得等可能性事件的概率可以用列举法而求得列举法列举法就是把要数的对象一一列举出来分析求解就是把要数的对象一一列举出来分析求解的方法.的方法. 例1:掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上2)两枚硬币全部反面朝上3)一枚硬币正面朝上,一枚反面朝下 当一次试验涉及当一次试验涉及两个因素两个因素时,且时,且可能出现的可能出现的结果较多结果较多时,为不重复不时,为不重复不遗漏地列出所有可能的结果,通常用遗漏地列出所有可能的结果,通常用列表法列表法 用列举法求概率例例1、同时掷两个质地均匀的骰子、同时掷两个质地均匀的骰子,计计算下列事件的概率算下列事件的概率:(1)两个骰子的点数相同两个骰子的点数相同(2)两个骰子点数之和是两个骰子点数之和是9(3)至少有一个骰子的点数为至少有一个骰子的点数为2分析:这里涉及到两个因素,所以先用列表法把分析:这里涉及到两个因素,所以先用列表法把所有可能的结果列举出来,然后再分析每个事件所有可能的结果列举出来,然后再分析每个事件所包含的可能结果种数即可求出相应事件的概率所包含的可能结果种数即可求出相应事件的概率1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第一个第二个解:两个骰子的点数相同解:两个骰子的点数相同( (记为事件记为事件A) ∴P(A)=6/36=1/6A) ∴P(A)=6/36=1/6两个骰子点数之和是两个骰子点数之和是9(9(记为事件记为事件B) ∴B) ∴ P(B)=4/36=1/9P(B)=4/36=1/9至少有一个骰子的点数为至少有一个骰子的点数为2 (2 (记为事件记为事件C) ∴C) ∴ P(C)=11/36P(C)=11/361234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) 练习:口袋中一红三黑共练习:口袋中一红三黑共4 4个个小球,小球,⑴⑴第一次从中取出一个小第一次从中取出一个小球后放回,再取第二次球后放回,再取第二次, ,求求 “ “两两次取出的小球都是黑球次取出的小球都是黑球””的概率的概率. . ⑵⑵一次取出两个小球一次取出两个小球, ,求求““两个两个小球都是黑球小球都是黑球””的概率。
的概率用列举法求概率例例2、甲口袋中装有、甲口袋中装有2个相同的小球,它们分别个相同的小球,它们分别写有字母写有字母A和和B;; 乙口袋中装有乙口袋中装有3个相同的小球,个相同的小球,它们分别写有字母它们分别写有字母C、、D和和E;丙口袋中装有;丙口袋中装有2个相同的小球,它们分别写有字母个相同的小球,它们分别写有字母H和和I从3个口袋中各随机地取出个口袋中各随机地取出1个小球1)取出的)取出的3个小球上恰好有个小球上恰好有1个、个、2个和个和3个个元音字母的概率分别是多少?元音字母的概率分别是多少?((2)取出的)取出的3个小球上全是辅音字母的概率是个小球上全是辅音字母的概率是多少?多少? 用列举法求概率本题中元音字母本题中元音字母: A E I 辅音字母辅音字母: B C D H甲口袋中装有甲口袋中装有2个相同的小球,它们分别写有字母个相同的小球,它们分别写有字母A和和B;; 乙口袋中装有乙口袋中装有3个相同的个相同的小球,它们分别写有字母小球,它们分别写有字母C、、D和和E;丙口袋中装有;丙口袋中装有2个相同的小球,它们分别写有字个相同的小球,它们分别写有字母母H和和I。
从从3个口袋中各随机地取出个口袋中各随机地取出1个小球1)取出的)取出的3个小球上恰好有个小球上恰好有1个、个、2个和个和3个元音字母的概率分别是多少?个元音字母的概率分别是多少? ((2)取出的)取出的3个小球上全是辅音字母的概率是多少?个小球上全是辅音字母的概率是多少? 甲甲乙乙丙丙ACDEHI HI HIBCDEHI HI HIBCHACHACIADHADIAEHAEIBCIBDHBDIBEHBEI解:由树形图得,所有可能出现的解:由树形图得,所有可能出现的结果有结果有12个,它们出现的可能性相个,它们出现的可能性相等1)满足只有一个元音字母的结果)满足只有一个元音字母的结果有有5个,则个,则 P(一个元音)(一个元音)=满足只有两个元音字母的结果有满足只有两个元音字母的结果有4个,个,则则 P(两个元音)(两个元音)= =满足三个全部为元音字母的结果有满足三个全部为元音字母的结果有1个,则个,则 P(三个元音)(三个元音)=((2)满足全是辅音字母的结果有)满足全是辅音字母的结果有2个,则个,则 P(三个辅音)(三个辅音)= = 用列举法求概率想一想,什么时候用想一想,什么时候用“列表法列表法”方便,什么时候用方便,什么时候用“树形图树形图”方便方便??ACDEHI HI HIBCDEHI HI HIBCHACHACIADHADIAEHAEIBCIBDHBDIBEHBEI1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第一个第二个当一次试验涉及当一次试验涉及两个因素两个因素时,且可能出时,且可能出现的结果较多时,为不重复不遗漏地列现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用出所有可能的结果,通常用列表法列表法当一次试验涉及当一次试验涉及3个因素或个因素或3个以上个以上的因素的因素时,列表法就不方便了,为不时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,重复不遗漏地列出所有可能的结果,通常用通常用树形图树形图用列举法求概率练习:经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果练习:经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(列事件的概率:(1)三辆车全部继续直行()三辆车全部继续直行(2)两辆车右转,一辆车左转)两辆车右转,一辆车左转((3)至少有两辆车左转)至少有两辆车左转 左左左左直直右右左左 直直 右右左左 直直 右右左左 直直 右右直直左左直直右右左左 直直 右右左左 直直 右右左左 直直 右右右右左左直直右右左左 直直 右右左左 直直 右右左左 直直 右右解:由树形图得,所有可能出现的结果有解:由树形图得,所有可能出现的结果有27个,它们出现的可能性相等。
个,它们出现的可能性相等1)三辆车全部继续直行的结果有)三辆车全部继续直行的结果有1个,则个,则 P(三辆车全部继续直行)(三辆车全部继续直行)=((2)两辆车右转,一辆车左转的结果有)两辆车右转,一辆车左转的结果有3个,则个,则 P(两辆车右转,一辆车左转)(两辆车右转,一辆车左转)= =((3)至少有两辆车左转的结果有)至少有两辆车左转的结果有7个,则个,则 P(至少有两辆车左转)(至少有两辆车左转)=左左直直 右右左左左左左左左左左左左左左左直直 右右直直左左左左直直左左直直左左直直 右右右右左左左左右右左左右右直直直直 右右左左左左直直左左直直左左直直直直 右右直直左左直直直直直直直直直直直直 右右右右左左直直右右直直右右右右直直 右右左左左左右右左左右右左左右右直直 右右直直左左右右直直右右直直右右直直 右右右右左左右右右右右右右右用列举法求概率第一辆车第一辆车第二辆车第二辆车第三辆车第三辆车课堂小结:课堂小结:这节课我们学习了哪些内容?这节课我们学习了哪些内容?通过学习你有什么收获?通过学习你有什么收获? 用列举法求概率 1 1、当一次试验涉及、当一次试验涉及两个因素两个因素时,且可时,且可能出现的结果较多时,为不重复不遗漏地能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列出所有可能的结果,通常用列表法列表法 2 2、当一次试验涉及、当一次试验涉及3 3个因素或个因素或3 3个以上个以上的因素的因素时,列表法就不方便了,为了不重时,列表法就不方便了,为了不重复不遗漏地列出所有可能的结果,通常用复不遗漏地列出所有可能的结果,通常用树形图树形图。












