好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

巧用对偶原理求最值及证不等式.doc

2页
  • 卖家[上传人]:bin****86
  • 文档编号:55237637
  • 上传时间:2018-09-26
  • 文档格式:DOC
  • 文档大小:126.50KB
  • / 2 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 巧用对偶原理求最值和证不等式对偶原理在解题中的运用并不陌生,在中学数学教学中有很多地方运用了对偶原理思 想在几何中,互补的两个角是对偶的,互余的两个角是关于 90 度角对偶的正与负对偶 共轭因式、共轭复数互为对偶在分母有理化和实数化运算中,就是对偶原理的应用运 用对偶原理的关键是寻找合适的互补量、合适的互补事物本文在求最值、证不等式中, 活用对偶原理,达到出奇制胜的效果 一.求最值例 1 设,求的最大值0x 111yxxxx解:令,则就是的对偶量(函数)111uxxxxuy此时 又 11yuyu 22 123u  故有 所以 (当时)12323y max23y1x 例 2 设函数,求的最小值122010yxxxy解:先考察函数 ()( )f xxaxbab由知2 , ( ), 2,abxxa f xabaxb xabxb   min( )fxba联想首尾配对的思想有(12010)(22009)(10051006)yxxxxxx由图像及知( )f x 1005,10061004,10071,2010min( 12010)( 22009)( 1005 1006)y     1 21005 1006 10072010  思考:已知函数,求的最小值。

      122011yxxxy二.证不等式例 3 设为正数,,试证:, a b111ab21()22()nnnnnababnN解:令1122211(),nnnnnnn nnnMababC abC abCab(与是一组对偶量) 1122211nnnnn nnnNCabCa bC abMN有1212()2(22)nnnnnn nnnMNa bCCCa b又11122ababababab 故有 所以212 (22)()nnMNnN21()22()nnnnnababnN例 4 已知且,求证:0(1,2,, )iain11ni ia222 12122311 2nnaaa aaaaaa解:令,构造对偶式222 1212231nnaaaAaaaaaa,则有222 32112231naaaBaaaaaa10,()2ABAAB由及知1223111()()()()24nABaaaaaa11ni ia,即1 2A222 12122311 2nnaaa aaaaaa思考;已知,求证:22221abcd444444()()()()()()6abacadbcbdcd提示:令,444444()()()()()()Aabacadbcbdcd考虑其对偶式,444444()()()()()()Babacadbcbdcd由即可证之。

      222226()6AABabcd由上述例题看到,构造对偶量需知识、经验与灵感如何寻找对偶量、对偶事物并无 定则,只要解决问题就行,这需要靠平时经验的积累和思维的灵敏度。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.