
北师大版七下整式的乘除单元检测卷二含答案.doc
10页2021年北师大版七下《整式的乘除》单元检测卷二一、选择题(每题3分,共30分)1.在同一平面内两条直线的位置关系可能是( )A.相交或垂直 B.垂直或平行 C.平行或相交 D.平行或相交或垂直2.a,b,c是同一平面内任意三条直线,交点可能有( )A.1个或2个或3个 B.0个或1个或2个或3个C.1个或2个 D.都不对3.如图,是同位角关系的是( )A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.下列说法正确的是( )A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直6.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是( )A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定7.如图,有三条公路,其中AC与AB垂直,小明和小亮分别从A,B两点沿AC,BC同时出发骑车到C城,若他们同时到达,则下列判断中正确的是( ) A.小亮骑车的速度快B.小明骑车的速度快C.两人骑车的速度一样快D.因为不知道公路的长度,所以无法判断他们骑车速度的快慢8.下列说法中,正确的是( )A.过点P不能画线段AB的垂线B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥ABC.在同一平面内,过一点有且只有一条直线垂直于已知直线D.过一点有且只有一条直线平行于已知直线9.如图,如果AB ∥CD ,则∠α,∠β,∠γ之间的关系是 ( )A. ∠α+∠β+∠γ=180° B. ∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180° D.∠α+∠β+∠γ=270°10.如图,已知A1B∥AnC,则∠A1+∠A2+…+∠An=( )A.180°n B.(n+1)180° C.(n-1)180° D.(n-2)180°二、填空题(每题3分,共24分)11.尺规作图是指用____________画图. 12. 如图,直线a,b相交,∠1=60°,则∠2=________,∠3=________,∠4=________. 13.如图,直线AB与CD的位置关系是_________,记作_________于点_________,此时∠AOD=_________=_________=_________=90°. 14.如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=_________.15.如图,请写出能判断CE∥AB的一个条件,这个条件是:_______或_______或_______.16.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=_________.17.同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a__________c.若a∥b,b∥c,则a_________c.若a∥b,b⊥c,则a_________c. 18.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 . 三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.如图,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?(3)请你用直尺和圆规作图,作一个角,使它等于2∠ABC.(要求用尺规作图,不必写作法,但要保留作图痕迹)20.如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:因为AD∥BC(已知),所以∠1=∠3(___________).因为∠1=∠2(已知),所以∠2=∠3.所以BE∥___________ (___________). 所以∠3+∠4=180°(___________).21.如图,已知∠1=∠2,AC平分∠DAB,你能判定哪两条直线平行?说明理由.22.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)试说明:CF∥AB;(2)求∠DFC的度数.23.如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.25.如图,已知AB∥CD,分别探讨下面的四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得关系中任意选取一个加以说明.参考答案一、1.【答案】C2.【答案】B 解:三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交,不交于同一点,有三个交点,故选B.本题考查了相交线,分类讨论是解题关键,注意不要漏掉任何一种情况.3.【答案】B 解:同位角的特征:在截线同旁,在两条被截直线同一方向上.4.【答案】B 5.【答案】D6.【答案】D 解:因为不知道直线AB和CD是否平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角的大小关系,故选D.7.【答案】A8.【答案】C 解:过一点画线段的垂线,即过一点画线段所在直线的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点且与AB垂直的直线上,或Q点不在过P点且与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;故C正确.9.【答案】C 解:如图,过点E向右作EF∥CD,则∠FED=∠γ;由AB∥CD,可知EF∥AB,所以∠α+∠AEF=180°,即∠AEF=180°-∠α.不难看出∠β=∠FED+∠AEF,由此得到∠β=∠γ+∠AEF=∠γ+180°-∠α,即∠α+∠β-∠γ=180°,故选C.10.【答案】C 解:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……因为A1B∥AnC,所以A3E∥A2D∥…∥A1B∥AnC,所以∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,…,所以∠A1+∠A1A2A3+…+∠An-1AnC=(n-1)180°. 二、11.【答案】圆规和没有刻度的直尺12. 【答案】120°;60°;120°13.【答案】垂直;AB⊥CD; O;∠BOD; ∠BOC;∠AOC14.【答案】50° 解:因为AB∥CD,所以∠1=∠AGF.因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF.故∠EGB=50°. 15.【答案】∠DCE=∠A;∠ECB=∠B;∠A+∠ACE=180°16.【答案】90° 解:因为AB∥CD,所以∠BAC+∠ACD=180°.因为CE,AE分别平分∠ACD,∠CAB,所以∠1+∠2=90°. 17.【答案】∥;∥;⊥18.【答案】48°三、19.解:(1)如图,①直线PD即为所求;②直线PE,PF即为所求.(2)∠EPF=∠B.理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),所以∠EPF=∠B(等量代换).(3)作∠MGH=∠ABC,以GH为一边在外侧再作∠HGN=∠ABC,即∠MGN=2∠ABC.20.解:因为AD∥BC(已知),所以∠1=∠3(两直线平行,内错角相等).因为∠1=∠2(已知),所以∠2=∠3.所以BE∥DF(同位角相等,两直线平行).所以∠3+∠4=180°(两直线平行,同旁内角互补).21.解:DC∥AB,理由如下:因为AC平分∠DAB,所以∠1=∠3.又因为∠1=∠2,所以∠2=∠3.所以DC∥AB(内错角相等,两直线平行).22.解:(1)因为CF平分∠DCE,所以∠1=∠2=∠DCE.因为∠DCE=90°,所以∠1=45°.因为∠3=45°,所以∠1=∠3.所以CF∥AB(内错角相等,两直线平行).(2)因为∠D=30°,∠1=45°,所以∠DFC=180°-30°-45°=105°.23.解:因为∠1+∠2=180°,所以AB∥CD.所以∠3=∠GOD.因为∠3=100°,所以∠GOD=100°.所以∠DOH=180°-∠GOD=180°-100°=80°.因为OK平分∠DOH,所以∠KOH=∠DOH=×80°=40°.24.解:因为AE平分∠BAD,所以∠1=∠2.因为AB∥CD,∠CFE=∠E,所以∠1=∠CFE=∠E.所以∠2=∠E.所以AD∥BC.25.解:题图①:∠APC+∠PAB+∠PCD=360°.理由:过点P向右作PE∥AB,如图①,因为AB∥CD, 所以AB∥PE∥CD.所以∠A+∠1=180°,∠2+∠C=180°.所以∠A+∠1+∠2+∠C=360°.所以∠APC+∠PAB+∠PCD=360°.题图②:∠APC=∠PAB+∠PCD.理由:过点P向左作PE∥AB, 如图②,因为AB∥CD, 所以AB∥PE∥CD.所以∠1=∠A,∠2=∠C. 所以∠APC=∠1+∠2=∠PAB+∠PCD.题图③:∠APC=∠PAB-∠PCD.理由: 延长BA交PC于E, 如图③,因为AB∥CD, 所以∠1=∠C.因为∠PAB=180°-∠PAE=∠1+∠P, 所以∠PAB=∠APC+∠PCD.所以∠APC=∠PAB-∠PCD.题图④:∠APC=∠PCD-∠PAB.理由:设AB与PC交于点Q,如图④,因为AB∥CD, 所以∠1=∠C.因为∠1=180°-∠PQA=∠A+∠P, 所以∠P=∠1-∠A.所以∠APC=∠PCD-∠PAB.。
