好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

北京市海淀区2013届高三数学5月查缺补漏试题 文 北师大版.doc

11页
  • 卖家[上传人]:人***
  • 文档编号:469339471
  • 上传时间:2023-03-02
  • 文档格式:DOC
  • 文档大小:753.50KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2013年高三数学查漏补缺题文 科1.函数图象的两条相邻对称轴间的距离为A. B. C. D. 2.下列函数中,在其定义域内既是奇函数又是减函数的是 A. B. C. D.3.若向量满足,且,则向量的夹角为 A.30° B.45° C.60° D.90°4.已知函数,则,,的大小关系为A.        B.C.         D.5.某空间几何体三视图如右图所示,则该几何体的表面积为_____,体积为_____________. 6.设、是不同的直线,、、是不同的平面,有以下四个命题:① 若 则 ②若,,则③ 若,则 ④若,则其中所有真命题的序号是_____7.设不等式组表示的平面区域为D,若直线上存在区域D上的点,则的取值范围是_____. 8.已知不等式组所表示的平面区域为,则的面积是_____;设点,当最小时,点坐标为_____.9.设等比数列的公比为,前项和为.则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件10.设函数在区间上有两个零点,则的取值范围是( )A.B.C.D.11.已知椭圆的离心率为.⊙过椭圆的一个顶点和一个焦点,圆心在此椭圆上,则满足条件的点的个数是( )A.B.C.D.12.如果直线总不经过点,其中,那么的取值范围是_____.13.如图所示,正方体的棱长为1, E、F 分别是棱、的中点,过直线E、F的平面分别与棱、交于M、N,设BM= x,,给出以下四个命题:①平面MENF平面;②四边形MENF周长,是单调函数;③四边形MENF面积,是单调函数;④四棱锥的体积为常函数;以上命题中正确命题的个数( )A.1 B.2 C.3 D.414.直线与抛物线相切于点. 若的横坐标为整数,那么的最小值为 15.已知数列的前项和 若是中的最大值,则实数的取值范围是_____.解答题部分:1. 已知函数(I)求的最小正周期和值域;(II)在中,角所对的边分别是,若且,试判断的形状.2.如图,在直角坐标系中,点是单位圆上的动点,过点作轴的垂线与射线交于点,与轴交于点.记,且.(Ⅰ)若,求; (Ⅱ)求面积的最大值. 3. 已知函数,且﹙Ⅰ﹚求的值.(Ⅱ)求函数在区间 上的最大和最小值.4. 已知数列的通项公式为,其前项和为.(I) 若,求的值;(Ⅱ) 若且,求的取值范围.5.数列的各项都是正数,前项和为,且对任意,都有. (Ⅰ)求的值; (Ⅱ)求证:; (Ⅲ)求数列的通项公式. 6. 已知正三角形与平行四边形所在的平面互相垂直.又,且,点分别为的中点. 求证: 7. 如图,四棱锥中,⊥底面,⊥.底面为梯形,,.,点在棱上,且.(Ⅰ)求证:平面⊥平面;(Ⅱ)求证:∥平面8. 设、是函数的两个极值点.(I)若,求函数的解析式;(Ⅱ)若,求的最大值. 9. 已知函数.(Ⅰ)若,求函数的极值;(Ⅱ)求函数的单调区间.10. 已知椭圆:的左、右焦点分别为,,且经过点,又是椭圆上的两点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过,且,求.11. 已知椭圆的离心率为,短轴长为.(Ⅰ)求椭圆的方程;(Ⅱ)已知点,过原点的直线与椭圆交于两点,直线交椭圆于点,求△面积的最大值.2013年最后阶段高三数学复习参考资料 文 科 2013年5月题号12345答案BCCA,题号678910答案①③CC题号1112131415答案CB1解答题部分:1. 解:﹙Ⅰ﹚ 所以 ﹙Ⅱ﹚由,有, 所以 因为,所以,即. 由余弦定理及,所以. 所以 所以.所以为等边三角形. 2. 解:依题意,所以. 因为,且,所以. 所以. (Ⅱ)由三角函数定义,得,从而 所以 因为,所以当时,等号成立, 所以面积的最大值为 . 3.解:(I) (Ⅱ)因为设因为所以所以有由二次函数的性质知道,的对称轴为 所以当 ,即,时,函数取得最小值当,即,时,函数取得最大小值4.解:(I)因为所以所以是公差为的等差数列,又,所以,解得,所以(Ⅱ)因为且所以,得到5.证明:(I)在已知式中,当时, 因为,所以, 所以,解得 (Ⅱ) 当时, ① ② 当时, ① ② ①-②得, 因为 所以, 即 因为适合上式 所以(n∈N+) (Ⅲ)由(I)知 ③ 当时, ④ ③-④得- 因为 ,所以所以数列是等差数列,首项为1,公差为1,可得6. 证明:因为在正三角形中,为中点,所以又平面平面,且平面平面,所以平面,所以在中,所以可以得到,所以,即,又 所以平面,所以7.证明:(Ⅰ)因为⊥底面ABCD,所以.又,,所以⊥平面. 又平面,所以平面⊥平面. (Ⅱ)因为⊥底面,所以 又,且 所以平面,所以. 在梯形中,由,得,所以.又,故为等腰直角三角形.所以.连接,交于点,则 在中,,所以 又平面,平面,所以∥平面. 8.解(I)因为,所以 依题意有,所以. 解得,所以. . (Ⅱ)因为,依题意,是方程的两个根,且, 所以. 所以,所以. 因为,所以. 设,则. 由得,由得. 即函数在区间上是增函数,在区间上是减函数, 所以当时,有极大值为96,所以在上的最大值是96, 所以的最大值为. 9. 解:(Ⅰ)因为 ,所以 ,. 令,即. 因为 函数的定义域为,所以 . 因为 当时,;当时,,所以 函数在时取得极小值6. (Ⅱ)由题意可得 .由于函数的定义域为,所以 当时,令,解得或;令,解得;当时,令,解得;令,解得; 当时,令,解得或;令,解得;当时,. 所以 当时,函数的单调递增区间是,,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,,单调递减区间是; 当时,函数的单调递增区间是 10. 解:(Ⅰ)因为 点在椭圆:上,所以 . 所以 . 所以 椭圆的方程为. (Ⅱ)因为 . 设,得,.因为直线过,且,所以 .所以 . 所以 所以 .所以 .所以 . 所以 .11. 解:(Ⅰ)椭圆的方程为.(Ⅱ)设直线的方程为,代入椭圆方程得,由,得,所以 ,.因为是的中点,所以 .由 ,设,则,  当且仅当时等号成立,此时△面积取最大值,最大值为.。

      点击阅读更多内容
      相关文档
      2025届湖北省新八校协作体高三下学期10月联考-化学试题(含答案).docx 2025届河南省青桐鸣高三下学期10月大联考-历史试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-语文试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-生物试题(含答案).docx 2025届八省联考教研联盟高三下学期演练统一监测考-语文试卷(含答案).docx 2025届河南省青桐鸣高三下学期10月大联考-地理试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-政治试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-物理试题(含答案).docx 2025届河南省高三上学期联考(二)-语文试题(含答案).docx 2025届河南省高三上学期联考(二)-生物试题(含答案).docx 2025届广东省联考高三上学期10月月考-历史试题(含答案).docx 2025届八省联考教研联盟高三下学期演练统一监测考-物理试卷(含答案).docx 2025届河南省高三上学期联考(二)-物理试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-数学试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-政治试题(含答案).docx 2025届河南省高三上学期联考(二)-政治试题(含答案).docx 湖北省腾云联盟2024-2025学年高三上学期8月联考数学试卷(含答案).docx 2025届河南省创新发展联盟高三下学期9月联考-化学试题(含答案).docx 2025届云南省大理民族中学高三上学期开学考-地理试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-英语试题(含答案).docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.