好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

角函数的图象与性质人教A.doc

11页
  • 卖家[上传人]:大米
  • 文档编号:500855722
  • 上传时间:2022-11-13
  • 文档格式:DOC
  • 文档大小:276KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    •   第3讲 三角函数的图象与性质【2013年高考会这样考】1.考查三角函数的图象及其性质在图象交换中的应用.2.考查三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.【复习指导】1.掌握正弦,余弦、正切三角函数的图象和性质,会作三角函数的图象.通过三角函数的图象研究其性质.2.注重函数与方程、转化与化归、数形结合思想等数学思想方法的运用.基础梳理1.“五点法”描图(1)y=sin x的图象在[0,2π]上的五个关键点的坐标为(0,0),,(π,0),,(2π,0).(2)y=cos x的图象在[0,2π]上的五个关键点的坐标为(0,1),,(π,-1),,(2π,1).2.三角函数的图象和性质  函数性质  y=sin xy=cos xy=tan x定义域RR{x|x≠kπ+,k∈Z}图象值域[-1,1][-1,1]R / 对称性对称轴:x=kπ+(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:无对称轴对称中心:(k∈Z)周期2π2ππ单调性单调增区间,2kπ+(k∈Z);单调减区间,2kπ+(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间,kπ+(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.(2)奇偶性三角函数中奇函数一般可化为y=Asin ωx或y=Atan ωx,而偶函数一般可化为y=Acos ωx+b的形式.三种方法求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;(2)形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A版教材习题改编)函数y=cos,x∈R(  ).A.是奇函数B.是偶函数C.既不是奇函数也不是偶函数D.既是奇函数又是偶函数答案 C2.函数y=tan的定义域为(  ).A. B.C. D.答案 A3.(2011·全国新课标)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(-x)=f(x),则(  ).A.f(x)在单调递减B.f(x)在单调递减C.f(x)在单调递增D.f(x)在单调递增解析 f(x)=sin(ωx+φ)+cos(ωx+φ)=sin,由最小正周期为π得ω=2,又由f(-x) =f(x)可知f(x)为偶函数,因此φ+=kπ+(k∈Z),又|φ|<可得φ=,所以f(x)=cos 2x,在单调递减.答案 A4.y=sin的图象的一个对称中心是(  ).A.(-π,0) B.C. D.解析 ∵y=sin x的对称中心为(kπ,0)(k∈Z),∴令x-=kπ(k∈Z),x=kπ+(k∈Z),由k=-1,x=-π得y=sin的一个对称中心是.答案 B5.(2011·合肥三模)函数f(x)=cos的最小正周期为________.解析 T==π.答案 π  考向一 三角函数的定义域与值域【例1】►(1)求函数y=lg sin 2x+的定义域.(2)求函数y=cos2x+sin x的最大值与最小值.[审题视点] (1)由题干知对数的真数大于0,被开方数大于等于零,再利用单位圆或图象求x的范围.(2)将余弦化为正弦,再换元处理,转化为关于新元的一元二次函数解决.解 (1)依题意⇒⇒.(2)设sin x=t,则t∈.∴y=1-sin2x+sin x=-2+,t∈,故当t=,即x=时,ymax=,当t=-,即x=-时,ymin=. (1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+k的形式,再求最值(值域);②形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化为关于t的二次函数求值域(最值);③形如y=asin xcos x+b(sin x±cos x)+c的三角函数,可先设t=sin x±cos x,化为关于t的二次函数求值域(最值).【训练1】 (1)求函数y=的定义域.(2)已知函数f(x)=cos+2sin·sin,求函数f(x)在区间上的最大值与最小值.解 (1)要使函数有意义,必须使sin x-cos x≥0.利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cos x的图象,如图所示.在[0,2π]内,满足sin x=cos x的x为,,再结合正弦、余弦函数的周期是2π,所以定义域为.(2)由题意得:f(x)=cos 2x+sin 2x+(sin x-cos x)·(sin x+cos x)=cos 2x+sin 2x+sin2x-cos2x=cos 2x+sin 2x-cos 2x=sin.又x∈,∴2x-∈,∴sin∈.故当x=时,f(x)取最大值1;当x=-时,f(x)取最小值-.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y=2cos2-1是(  ).A.最小正周期为π的奇函数 B.最小正周期为π的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数[审题视点] 先化简为一个角的三角函数,再确定周期和奇偶性.解析 y=2cos2-1=cos=sin 2x为奇函数,T==π.答案 A 求解三角函数的奇偶性和周期性时,一般先要进行三角恒等变换,把三角函数式化为一个角的一个三角函数,再根据函数奇偶性的概念、三角函数奇偶性规律、三角函数的周期公式求解.【训练2】 已知函数f(x)=(sin x-cos x)sin x,x∈R,则f(x)的最小正周期是________.解析 由f(x)=(sin x-cos x)sin x=sin2x-sin xcos x=-sin 2x=-sin+.∴最小正周期为π.答案 π考向三 三角函数的单调性【例3】►已知f(x)=sin x+sin,x∈[0,π],求f(x)的单调递增区间.[审题视点] 化为形如f(x)=Asin(x+φ)的形式,再求单调区间.解 f(x)=sin x+sin=sin x+cos x=sin.由-+2kπ≤x+≤+2kπ,k∈Z,得:-+2kπ≤x≤+2kπ,k∈Z,又x∈[0,π],∴f(x)的单调递增区间为. 求形如y=Asin(ωx+φ)+k的单调区间时,只需把ωx+φ看作一个整体代入y=sin x的相应单调区间内即可,若ω为负则要先把ω化为正数.【训练3】 函数f(x)=sin的单调减区间为______.解析 f(x)=sin=-sin,它的减区间是y=sin的增区间.由2kπ-≤2x-≤2kπ+,k∈Z,得:kπ-≤x≤kπ+,k∈Z.故所求函数的减区间为(k∈Z).答案 (k∈Z)考向四 三角函数的对称性【例4】►(1)函数y=cos图象的对称轴方程可能是(  ).A.x=- B.x=- C.x= D.x=(2)若0<α<,g(x)=sin是偶函数,则α的值为________.[审题视点] (1)对y=cos x的对称轴为x=kπ,把“ωx+φ”看作一个整体,即可求.(2)利用+α=kπ+(k∈Z),求解限制范围内的α.解析 (1)令2x+=kπ(k∈Z),得x=-(k∈Z),令k=0得该函数的一条对称轴为x=-.本题也可用代入验证法来解.(2)要使g(x)=cos为偶函数,则须+α=kπ+,k∈Z,α=kπ+,k∈Z,∵0<α<,∴α=.答案 (1)A (2) 正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.【训练4】 (1)函数y=2sin(3x+φ)的一条对称轴为x=,则φ=________.(2)函数y=cos(3x+φ)的图象关于原点成中心对称图形.则φ=________.解析 (1)由y=sin x的对称轴为x=kπ+(k∈Z),即3×+φ=kπ+(k∈Z),得φ=kπ+(k∈Z),又|φ|<,∴k=0,故φ=.(2)由题意,得y=cos(3x+φ)是奇函数,∴φ=kπ+,k∈Z.答案 (1) (2)kπ+,k∈Z  难点突破9——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析.一、根据三角函数的单调性求解参数【示例】► (2011·镇江三校模拟)已知函数f(x)=sin(ω>0)的单调递增区间为(k∈Z),单调递减区间为(k∈Z),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f(x)=cos(x+φ)-sin(x+φ)为偶函数,则φ可以取的一个值为(  ).A. B. C.- D.-▲根据三角函数的周期性求解参数(教师备选)【示例】► (2011·合肥模拟)若函数y=sin ωx·sin(ω>0)的最小正周期为,则ω=________.▲根据三角函数的最值求参数(教师备选)【示例】► (2011·洛阳模拟)若函数f(x)=asin x-bcos x在x=处有最小值-2,则常数a、b的值是(  ).A.a=-1,b= B.a=1,b=-C.a=,b=-1 D.a=-,b=1 友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.