好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

粉末材料的孔隙性能与复合材料的强韧化.ppt

18页
  • 卖家[上传人]:人***
  • 文档编号:593296467
  • 上传时间:2024-09-24
  • 文档格式:PPT
  • 文档大小:1.39MB
  • / 18 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 粉末冶金原理主讲教师:施钢班级:09材料1、22011年10月24日厦门理工学院 第7章 粉末材料孔隙性能与复合材料的强韧化•粉末材料的孔隙度特性•孔隙度对性能的料性能的影响•弥散强化•颗粒强化•纤维强化•相变韧化•弥散韧化 教学要求、重点与难点教学要求: 了解粉末材料的孔隙度特性及其对性能的料性能的影响  理解弥散强化、颗粒强化、纤维强化、相变韧化、弥散韧化教学的重点:强化韧化方法 概述 粉末材料孔隙度特性•一般粉末冶金材料是金属和孔隙的复合体 残留孔隙度1%~2% 为致密材料 10%半致密材料 >16%多孔材料•孔隙是粉末冶金材料的固有特性•粉末材料孔隙度和孔径的测定•粉末多孔材料的透气性能•粉末多孔材料的表面特性•粉末多孔材料的其他特性•多孔材料具有较大的比表面和优良的透过性能,以及易压缩变形、吸收能量好和质量轻等特性 孔隙度对性能的料性能的影响•孔隙度显著影响粉末冶金材料的机械性能 物理性能 化学性能 工艺性能。

      •粉末冶金过程中,可对孔隙度、孔径及分布进行有效控制,并且可以在相当宽的范围内调整 弥散强化•粒子增强复合材料粒子增强复合材料 增强性复合材料:增强粒子的数量大于增强性复合材料:增强粒子的数量大于20%20% 弥散强化复合材料:含量较少时弥散强化复合材料:含量较少时•分类分类–通过相变(热处理)获得:析出硬化、沉淀强化或时效强化通过相变(热处理)获得:析出硬化、沉淀强化或时效强化–通过粉末烧结或内氧化获得:弥散强化通过粉末烧结或内氧化获得:弥散强化•强化效果强化效果–相粒子的强度、体积分数、间距、粒子的形状和分布等都对强化效果有相粒子的强度、体积分数、间距、粒子的形状和分布等都对强化效果有影响影响–第二相粒子强化比固溶强化的效果更为显著第二相粒子强化比固溶强化的效果更为显著 弥散强化与颗粒强化--强化机理强化机理强化机理强化机理l位错绕过机制(位错绕过机制(OrowanOrowan,奥罗万机制,奥罗万机制) 不易形变的粒子,包括弥散强化的不易形变的粒子,包括弥散强化的粒子和沉淀强化的大尺寸粒子粒子和沉淀强化的大尺寸粒子l位错切割机制位错切割机制 易形变的粒子,包括弥散强化的粒易形变的粒子,包括弥散强化的粒子和沉淀强化的大尺寸粒子子和沉淀强化的大尺寸粒子位错切过粒子的示意图位错切过粒子的示意图l 第二相粒子强化的最佳粒子半径 综合考虑切过、绕过两种机制,估算出第二相粒子强化的最佳粒子半径 rc=(G·b2)/(2·σs) 弥散强化•切过粒子引起强化的机制切过粒子引起强化的机制•短程交互作用短程交互作用–位错切过粒子形成新的表面积,增加了界面能位错切过粒子形成新的表面积,增加了界面能 –位错扫过有序结构时会形成错排面或叫做反相畴,产生反相畴界能位错扫过有序结构时会形成错排面或叫做反相畴,产生反相畴界能 –粒子与基体的滑移面不重合时,会产生割阶粒子与基体的滑移面不重合时,会产生割阶; ; 粒子的派粒子的派- -纳力纳力ττP-NP-N高于高于基体等,都会引起临界切应力增加基体等,都会引起临界切应力增加•长程交互作用(作用距离大于长程交互作用(作用距离大于10b10b))–由于粒子与基体的点阵不同(至少是点阵常数不同),导致共格界面失由于粒子与基体的点阵不同(至少是点阵常数不同),导致共格界面失配,从而造成应力场配,从而造成应力场 弥散强化影响弥散强化材料强度的因素:•弥散相和基体的性质–弥散相的性质:弥散相粒子稳定,不长大–弥散相的粒度、含量、粒子间距(分布均性)、形状•弥散相与基体之们的作用–弥散相在基体中不溶解、不反应–基体与弥散相之间的界面能小•压力加工•生产方法•合理的合金成份,在一定范围内提高弥散相的含量,减小弥散相的粒度和粒子间距,使弥散相均匀分布于基体中,并采用大的加工形变。

      还要兼故其他性能,并考虑经济性和资源条件 弥散强化•弥散强化材料的性能与应用–再结晶温度高,组织稳定–屈服强度和抗拉强度高–随温度提高硬度下降少–高温蠕变性能好–疲劳强度高–高的传导性 颗粒强化•硬质合金:利用金属硬质化合物相的高硬度与金属的塑性的切削工具材料–含钨硬质合金–无钨硬质合金:碳化钛基硬质合金,碳化铬硬质合金–钢结硬质合金 纤维强化•基体:将所受外力传递给增强纤维并为复合材料提供塑性和韧性•增强纤维:承受主要外加载荷应选强度和弹性模量都高于基体的纤维•纤维和基体之间要有一定的粘结作用,基体受力通过界面传递给纤维•但结合力不能过大,纤维失去拔出过程,易发生脆性断裂•纤维的排布方向要和构件的受力方向一致,以发挥增强作用•纤维和基体的热膨胀系数应相适应•纤维所占的体积百分比必须大于一定的体积含有率•不连续短纤维必须大于一定的长度混合定律 纤维强化影响纤维化材料强度的因素:•纤维和基体的性能•纤维的体积和尺寸–纤维的体积百分数–纤维的长度和直径 直径大,强度小 直径太小,易受损 纤维长度>临界长度•纤维与基体金属的结合强度•纤维的分布和排列•复合方法 纤维强化 相变韧化和弥散韧化•韧化机理:•过程区域机理:包括相变韧化,微裂纹韧化,孪晶韧化•桥接区域机理:包括弥散韧化,晶须韧化,纤维韧化•相变韧化•材料在外力作用时,发生相的转变,吸收能量,从而提高材料的韧性。

      相变韧化和弥散韧化•弥散韧化•当裂纹扩展过程中,裂纹遇到第二相粒子时会避开粒子而偏转,在弥散粒子之间走“之”字,裂纹形状和长度改变,新裂纹表面的形成都会吸收能量,从而提高材料的韧性 小结教学要求: 了解粉末材料的孔隙度特性及其对性能的料性能的影响  理解弥散强化、颗粒强化、纤维强化、相变韧化、弥散韧化教学的重点:强化、韧化方法 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.