
河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题【含答案】.doc
19页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列数据特征量:平均数、中位数、众数、方差之中,反映集中趋势的量有( )个.A. B. C. D.2、(4分)下列方程中是二项方程的是( )A.; B.=0; C.; D.=1.3、(4分)下列四组线段中,能组成直角三角形的是 A.,, B.,,C.,, D.,,4、(4分)下列说法中正确的是( )A.点(2,3)和点(3,2)表示同一个点 B.点(-4,1)与点(4,-1)关于x轴对称C.坐标轴上的点的横坐标和纵坐标只能有一个为0 D.第一象限内的点的横坐标与纵坐标均为正数5、(4分)如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是( )A.7 B.5 C.3 D.26、(4分)下列四组线段中,可以构成直角三角形的是( )A.4, 5, 6 B.5, 12, 13 C.2, 3, 4 D.1, ,37、(4分)已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线( x >0)经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为( ).A.(3,8) B.(12,) C.(4,8) D.(12,4)8、(4分)五一假期小明一家自驾去距家360km的某地游玩,全程的前一部分为高速公路,后一部分为乡村公路.若小汽车在高速公路和乡村公路上分别以某一速度匀速行驶,行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )A.小汽车在乡村公路上的行驶速度为60km/hB.小汽车在高速公路上的行驶速度为120km/hC.乡村公路总长为90kmD.小明家在出发后5.5h到达目的地二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是 _________________ 米.10、(4分)将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.11、(4分)计算:3-2= ;12、(4分)若一个三角形的三边长分别为5、12、13,则此三角形的面积为 .13、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。
三、解答题(本大题共5个小题,共48分)14、(12分)计算:(1)(2)15、(8分)已知:如图,在矩形中,点,分别在,边上,,连接,.求证:.16、(8分)先化简,再求值,其中.17、(10分)(1)解不等式:(2)解方程:18、(10分)如图,四边形ABCD是菱形,AC=24, BD=10,DH⊥AB 于点H,求菱形的面积及线段DH的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)20、(4分)已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为____.21、(4分)如下图,将边长为 9cm 的正方形纸片 ABCD 折叠,使得点 A 落在边 CD 上的 E 点,折痕为 MN.若 CE 的长为 6cm,则 MN 的长为_____cm.22、(4分)直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.23、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.二、解答题(本大题共3个小题,共30分)24、(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.25、(10分)如图,在▱ABCD中,O是对角线AC的中点,AB⊥AC,BC=4cm,∠B=60°,动点P从点B出发,以2cm/s的速度沿折线BC﹣CD向终点D运动,连结PO并延长交折线DA﹣AB于点Q,设点P的运动时间为t(s).(1)当PQ与▱ABCD的边垂直时,求PQ的长;(2)当t取何值时,以A,P,C,Q四点组成的四边形是矩形,并说明理由;(3)当t取何值时,CQ所在直线恰好将▱ABCD的面积分成1:3的两部分.26、(12分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据平均数、中位数、众数、方差的性质判断即可.【详解】数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选B.本题考查的是平均数、中位数、众数、方差,掌握它们的性质是解题的关键.2、C【解析】【分析】二项方程:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.据此可以判断.【详解】A. ,有2个未知数项,故不能选; B. =0,没有非0常数项,故不能选; C. ,符合要求,故能选; D. =1,有2个未知数项,故不能选.故选C【点睛】本题考核知识点:二项方程.解题关键点:理解二项方程的定义.3、D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.1²+2²≠3²,故不是直角三角形,故本选项错误;B.2²+3²≠4²故不是直角三角形,故本选项错误;C.2²+4²≠5²,故不是直角三角形,故本选项错误;D.3²+4²=5 ²,故是直角三角形,故本选项正确.故选D.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、D【解析】分析:根据平面直角坐标系中点的位置,即可做出判断.详解:A.点(2,3)和点(3,2)表示同一个象限内的两个点,所以A错误; B.点(﹣4,1)与点(4,1)关于x轴对称,所以B错误; C.坐标轴上的点的横坐标和纵坐标可以有一个为0,也可以两个都为0,所以C错误. D.第一象限内的点的横坐标与纵坐标均为正数,正确. 故选D.点睛:解决本题的关键是要熟悉并确定点在坐标系中的位置,还涉及到点的对称问题,同时要牢记各象限内点的坐标的符号.5、B【解析】首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.【详解】解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,∴Rt△AEC≌Rt△CDB又∵AE=7,BD=2,∴CE=BD=2,AE=CD=7,DE=CD-CE=7-2=5.此题主要考查直角三角形的全等判定,熟练运用即可得解.6、B【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.【详解】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.故选:B.本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、B【解析】过点B作轴于点,由可求出菱形的面积,由点的坐标可求出的长,根据勾股定理求出的长,故可得出点的坐标,对角线相交于D点可求出点坐标,用待定系数法可求出双曲线的解析式,与的解析式联立,即可求出点的坐标.【详解】过点B作轴于点, ,点的坐标 又 菱形的边长为10, 在中, 又 点是线段的中点, 点的坐标为 又 直线的解析式为 联立方程可得: 解得: 或, 点的坐标为 故选:B.本题主要考查反比例函数与一次函数以及菱形综合,熟练的掌握菱形面积求法是解决本题的关键.8、A【解析】根据一次函数图象的性质和“路程=速度×时间”的关系来分析计算即可.【详解】解:小汽车在乡村公路上的行驶速度为:(270﹣180)÷(3.5﹣2)=60km/h,故选项A正确,小汽车在高速公路上的行驶速度为:180÷2=90km/h,故选项B错误,乡村公路总长为:360﹣180=180km,故选项C错误,小明家在出发后:2+(360﹣180)÷60=5h到达目的地,故选项D错误,故选:A.一次函数在实际生活中的应用是本题的考点,根据题意读懂图形及熟练掌握“路程=速度×时间”的关系是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:设旗杆高度为x,则,解得x=1.故答案为:1.本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.10、y=-4x-1【解析】根据函数图象的平移规律:上加下减,可得答案.【详解】解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.故答案为:y=-4x-1.本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.11、【解析】根据负整数指数为正整数指数的倒数计算.解:3-2=.故答案为.12、30【解析】解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=3013、10%【解析】设这种服装平均每件降价的百分率是x,则降一次价变为80(1-x),降两次价变为80(1-x)2,而这个值等于1.8,从而得方程,问题得解.【详解】解:设这种服装平均每件降价的百分率是x,由题意得80(1-x)2=1.8∴(1-x)2=0.81∴1-x=0.9或1-x=-0.9∴x=10%或x=1.9(舍)故答案为10%.本题是一元二次方程的基本应用题,明白降两次。
