
初二春季能力训练八.doc
5页滕老师春季讲义(请勿外传)解答热线:18611649090;:450391382初二春季能力训练八1.正方形具有菱形不一定具有的性质是( ) A.对角线互相垂直;B.对角线互相平分 C.对角线相等 ;D.对角线平分一组对角2.已知三点都在反比例函数的图象上,若,则下列式子正确的是( )A. B. C. D.3.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( )A.4cm B.6cm C.8cm D.10cm4.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AB于点N,则MN等于( )A. B. C. D.5.若,则的值是 ( )A. ; B. ;C. ; D. ABCEDO6.如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是( )A.①②③ B.②③④ C.①③④ D.①②③④7.若分式方程无解,则=_________.8、将图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.图① 图② 图③(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是 ;(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是 . 9.如图,已知正方形ABCD,G为对角线CA延长线上一点,GF⊥GD。
1)求证:GF=GD;(2)延长FG交BA的延长线于E点,EM平分∠BEF,交GD于H点,BF于M点求证:AE-CM=2GH10、如图1,四边形ABCD,将顶点为A的角绕着顶点A顺时针旋转,若角的一条边与DC的延长线交于点F,角的另一条边与CB的延长线交于点E,连接EF.(1)若四边形ABCD为正方形,当∠EAF=45°时,有EF=DF-BE.请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论);(3)如图3,如果四边形ABCD中,AB=AD,∠ABC与∠ADC互补,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式并给予证明.(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周长(直接写出结果即可). 图1 图2 图311.阅读下列材料:根据所给的图形解答下列问题: (1)如图,中,,,,把绕点旋转,并拼接成一个正方形,请你在图中完成这个作图; (2)如图,中,,,请你设计一种与(1)不同方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得 到的正方形;第11题图1第11题图2第11题图3 (3)设计一种方法把图中的矩形拆分并拼接为一个与其面积相等的正方形, 请你依据此矩形画出正方形. 12. (1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG; (2) 若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H, 则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想; (3) 如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想; (4) 观察图1、图2、图3的特性,请你根据这一特性构造一个图形, 使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.13. 在图25-1至图25-3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图25-1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图25-1中的CE绕点C顺时针旋转一个锐角,得到图25-2,求证:△FMH是等腰直角三角形;(3)将图25-2中的CE缩短到图25-3的情况,△FMH还是等腰直角三角形吗?AHCDE图25-3BFGMN(不必说明理由)G图25-2AHCDEBFNM图25-1AHC(M)DEBFG(N)14.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是 ,FG与DC的数量关系是 ;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.BACBDAFEGC15.如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=于点D,过D作两坐标轴的垂线DC、DE,连接OD.ABCEODxy(1)求证:AD平分∠CDE;(2)对任意的实数b(b≠0),求证AD·BD为定值;(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.16.如图2-63所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.17.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示).求证:∠DEF=∠HFE. 18、如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.19.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.20、 如图所示,已知等腰梯形ABCD中,AD∥BC,AC⊥BD,AD+BC=10,DE⊥BC于E,求DE的长. 5 第 页。












